skip to main content


Title: An assessment of temporal variability in mast seeding of North American Pinaceae
Our overall objective is to synthesize mast-seeding data on North American Pinaceae to detect characteristic features of reproduction (i.e. development cycle length, serotiny, dispersal agents), and test for patterns in temporal variation based on weather variables. We use a large dataset ( n = 286 time series; mean length = 18.9 years) on crop sizes in four conifer genera ( Abies , Picea , Pinus , Tsuga ) collected between 1960 and 2014. Temporal variability in mast seeding (CVp) for 2 year genera ( Abies , Picea , Tsuga ) was higher than for Pinus (3 year), and serotinous species had lower CVp than non-serotinous species; there were no relationships of CVp with elevation or latitude. There was no difference in family-wide CVp across four tree regions of North America. Across all genera, July temperature differences between bud initiation and the prior year (Δ T ) was more strongly associated with reproduction than absolute temperature. Both CVp and Δ T remained steady over time, while absolute temperature increased by 0.09°C per decade. Our use of the Δ T model included a modification for Pinus , which initiates cone primordia 2 years before seedfall, as opposed to 1 year. These findings have implications for how mast-seeding patterns may change with future increases in temperature, and the adaptive benefits of mast seeding. This article is part of the theme issue ‘The ecology and evolution of synchronized seed production in plants’.  more » « less
Award ID(s):
1745496 1926341 1926428
NSF-PAR ID:
10331483
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society B: Biological Sciences
Volume:
376
Issue:
1839
ISSN:
0962-8436
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Synchronous pulses of seed masting and natural disturbance have positive feedbacks on the reproduction of masting species in disturbance‐prone ecosystems. We test the hypotheses that disturbances and proximate causes of masting are correlated, and that their large‐scale synchrony is driven by similar climate teleconnection patterns at both inter‐annual and decadal time scales.

    Hypotheses were tested on white spruce (Picea glauca), a masting species which surprisingly persists in fire‐prone boreal forests while lacking clear fire adaptations. We built masting, drought and fire indices at regional (Alaska, Yukon, Alberta, Quebec) and sub‐continental scales (western North America) spanning the second half of the 20th century. Superposed Epoch Analysis tested the temporal associations between masting events, drought and burnt area at the regional scale. At the sub‐continental scale, Superposed Epoch Analysis tested whether El Niño‐Southern Oscillation (ENSO) and its coupled effects with the Atlantic Multidecadal Oscillation (AMO) in the positive phase (AMO+/ENSO+) synchronize drought, burnt area and masting. We additionally tested the consistency of our synchronization hypotheses on a decadal temporal scale to verify whether long‐term oscillations in AMO+/ENSO+ are coherent to decadal variation in drought, burnt area and masting.

    Analyses demonstrated synchronicity between drought, fire and masting. In all regions the year before a mast event was drier and more fire‐prone than usual. During AMO+/ENSO+ events sub‐continental indices of drought and burnt area experienced significant departures from mean values. The same was observed for large‐scale masting in the subsequent year, confirming 1‐year lag between fire and masting. Sub‐continental indices of burnt area and masting showed in‐phase decadal fluctuations led by the AMO+/ENSO+. Results support the ‘Environmental prediction hypothesis’ for mast seeding.

    Synthesis. We provide evidence of large‐scale synchronicity between seed masting inPicea glaucaand fire regimes in boreal forests of western North America at both inter‐annual and decadal time scales. We conclude that seed production in white spruce predicts changes in disturbance regimes by sharing the same large‐scale climate drivers with drought and fire. This gives new insides in a mechanism providing a fire‐sensitive species with higher than expected adaptability to changes in climate.

     
    more » « less
  2. Populations of many tree species exhibit synchronous and highly temporally variable seed crops across years. This is called mast seeding, and there are two predominant hypotheses for this pattern of reproduction: pollination efficiency and seed-predator satiation. Mast seeding studies typically involve records of population-level reproduction, with less information on the characteristics of reproductive structures. Here, we use data across 6 years (2012–2017), spanning a range of population-level cone conditions, to characterize (i) white spruce (Picea glauca (Moench) Voss) cone lengths and seeds per cone, and (ii) levels of seed predation. We quantified population-level cone production and collected 1399 cones from a total of 38 trees in the Huron Mountains, Michigan, USA. Linear mixed models showed that mean and minimum cone lengths varied significantly across years; both being longest during the greatest cone production year. Larger cones had more seeds and the slopes of the relationships as well as the intercepts varied significantly across years. Generalized linear mixed models and Akaike’s information criterion model selection showed that cones with insect predation damage was greatest when population-level reproduction was the lowest, with a mean proportion of cones damaged 0.82 in that year. Our findings show that white spruce cone characteristics and losses to insect seed predation vary temporally, and follow expectations based on mast seeding hypotheses. 
    more » « less
  3. Abstract Aim

    We analysed a dataset composed of multiple palaeoclimate and lake‐sediment pollen records from New England to explore how postglacial changes in the composition and spatial patterns of vegetation were controlled by regional‐scale climate change, a subregional environmental gradient, and landscape‐scale variations in soil characteristics.

    Location

    The 120,000‐km2study area includes parts of Vermont and New Hampshire in the north, where sites are 150–200 km from the Atlantic Ocean, and spans the coastline from southeastern New York to Cape Cod and the adjacent islands, including Block Island, the Elizabeth Islands, Nantucket, and Martha's Vineyard.

    Methods

    We analysed pollen records from 29 study sites, using multivariate cluster analysis to visualize changes in the composition and spatial patterns of vegetation during the last 14,000 years. The pollen data were compared with temperature and precipitation reconstructions.

    Results

    Boreal forest featuringPiceaandPinus banksianawas present across the region when conditions were cool and dry 14,000–12,000 calibrated14C years before present (ybp).Pinus strobusbecame regionally dominant as temperatures increased between 12,000 and 10,000 ybp. The composition of forests in inland and coastal areas diverged in response to further warming after 10,000 ybp, whenQuercusandPinus rigidaexpanded across southern New England, whereas conditions remained cool enough in inland areas to maintainPinus strobus. Increasing precipitation allowedTsuga canadensis,Fagus grandifolia, andBetulato replacePinus strobusin inland areas during 9,000–8,000 ybp, and also led to the expansion ofCaryaacross the coastal part of the region beginning at 7,000–6,000 ybp. Abrupt cooling at 5,500–5,000 ybp caused sharp declines inTsugain inland areas andQuercusat some coastal sites, and the populations of those taxa remained low until they recovered around 3,000 ybp in response to rising precipitation. Throughout most of the Holocene, sites underlain by sandy glacial deposits were occupied byPinus rigidaandQuercus.

    Main conclusions

    Postglacial changes in the composition and spatial pattern of New England forests were controlled by long‐term trends and abrupt shifts in temperature and precipitation, as well as by the environmental gradient between coastal and inland parts of the region. Substrate and soil moisture shaped landscape‐scale variations in forest composition.

     
    more » « less
  4. Abstract

    Subalpine forests that historically burned every 100–300 yr are expected to burn more frequently as climate warms, perhaps before trees reach reproductive maturity or produce a serotinous seedbank. Tree regeneration after short‐interval (<30‐yr) high‐severity fire will increasingly rely on seed dispersal from unburned trees, but how dispersal varies with age and structure of surrounding forest is poorly understood. We studied wind dispersal of three conifers (Picea engelmannii,Abies lasiocarpa, andPinus contortavar.latifolia, which can be serotinous and nonserotinous) after a stand‐replacing fire that burned young (≤30 yr) and older (>100 yr)P. contortaforest in Grand Teton National Park (Wyoming, USA). We asked how propagule pressure varied with time since last fire, how seed delivery into burned forest varied with age and structure of live forest edges, what variables explained seed delivery into burned forest, and how spatial patterns of delivery across the burned area could vary with alternate patterns of surrounding live forest age. Seeds were collected in traps along 100‐m transects (n = 18) extending from live forest edges of varying age (18, 30, and >100 yr) into areas of recent (2‐yr) high‐severity fire, and along transects in live forests to measure propagule pressure. Propagule pressure was low in 18‐yr‐old stands (~8 seeds/m2) and similarly greater in 30‐ and 100‐yr‐old stands (~32 seeds/m2). Mean dispersal distance was lowest from 18‐yr‐old edges and greatest from >100‐yr‐old edges. Seed delivery into burned forest declined with increasing distance and increased with height of trees at live forest edges, and was consistently higher forP. contortathan for other conifers. Empirical dispersal kernels revealed that seed delivery from 18‐yr‐old edges was very low (≤2.4 seeds/m2) and concentrated within 10 m of the live edge, whereas seed delivery from >100‐yr‐old edges was >4.9 seeds/m2out to 80 m. When extrapolated throughout the burned landscape, estimated seed delivery was low (<49,400 seeds/ha) in >70% of areas that burned in short‐interval fire (<30 yr). As fire frequency increases, immaturity risk will be compounded in short‐interval fires because seed dispersal from surrounding young trees is limited.

     
    more » « less
  5. Abstract

    Changing climate and disturbance regimes are increasingly challenging the resilience of forest ecosystems around the globe. A powerful indicator for the loss of resilience is regeneration failure, that is, the inability of the prevailing tree species to regenerate after disturbance. Regeneration failure can result from the interplay among disturbance changes (e.g., larger and more frequent fires), altered climate conditions (e.g., increased drought), and functional traits (e.g., method of seed dispersal). This complexity makes projections of regeneration failure challenging. Here we applied a novel simulation approach assimilating data‐driven fire projections with vegetation responses from process modeling by means of deep neural networks. We (i) quantified the future probability of regeneration failure; (ii) identified spatial hotspots of regeneration failure; and (iii) assessed how current forest types differ in their ability to regenerate under future climate and fire. We focused on the Greater Yellowstone Ecosystem (2.9 × 106 ha of forest) in the Rocky Mountains of the USA, which has experienced large wildfires in the past and is expected to undergo drastic changes in climate and fire in the future. We simulated four climate scenarios until 2100 at a fine spatial grain (100 m). Both wildfire activity and unstocked forest area increased substantially throughout the 21st century in all simulated scenarios. By 2100, between 28% and 59% of the forested area failed to regenerate, indicating considerable loss of resilience. Areas disproportionally at risk occurred where fires are not constrained by topography and in valleys aligned with predominant winds. High‐elevation forest types not adapted to fire (i.e.,Picea engelmanniiAbies lasiocarpaas well as non‐serotinousPinus contortavar.latifoliaforests) were especially vulnerable to regeneration failure. We conclude that changing climate and fire could exceed the resilience of forests in a substantial portion of Greater Yellowstone, with profound implications for carbon, biodiversity, and recreation.

     
    more » « less