Deciduous tree cover is expected to increase in North American boreal forests with climate warming and wildfire. This shift in composition has the potential to generate biophysical cooling via increased land surface albedo. Here we use Landsat-derived maps of continuous tree canopy cover and deciduous fractional composition to assess albedo change over recent decades. We find, on average, a small net decrease in deciduous fraction from 2000 to 2015 across boreal North America and from 1992 to 2015 across Canada, despite extensive fire disturbance that locally increased deciduous vegetation. We further find near-neutral net biophysical change in radiative forcing associated with albedo when aggregated across the domain. Thus, while there have been widespread changes in forest composition over the past several decades, the net changes in composition and associated post-fire radiative forcing have not induced systematic negative feedbacks to climate warming over the spatial and temporal scope of our study.
- Award ID(s):
- 1832042
- NSF-PAR ID:
- 10331524
- Date Published:
- Journal Name:
- Land
- Volume:
- 11
- Issue:
- 2
- ISSN:
- 2073-445X
- Page Range / eLocation ID:
- 283
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Surface albedo can affect the energy budget and subsequently cause localized warming or cooling of the climate. When we convert a substantial portion of lands to agriculture, land surface properties are consequently altered, including albedo. Through crop selection and management, one can increase crop albedo to obtain higher levels of localized cooling effects to mitigate global warming. Still, there is little understanding about how distinctive features of a cropping system may be responsible for elevated albedo and consequently for the cooling potential of cultivated lands. To address this pressing issue, we conducted seasonal measurements of surface reflectivity during five growing seasons on annual crops of corn-soybean–winter wheat (
Zea mays L.- Glycine max L. Merrill—Triticum aestivum L. ; CSW) rotations at three agronomic intensities, a monoculture of perennial switchgrass, and perennial polycultures of early successional and restored prairie grasslands. We found that crop-species, agronomic intensity, seasonality, and plant phenology had significant effects on albedo. The mean ± SD of albedo was highest in perennial crops of switchgrass (Panicum virgatum ; 0.179 ± 0.04), intermediate in early successional crops (0.170 ± 0.04), and lowest in a reduced input corn systems with cover crops (0.154 ± 0.02). Thes trongest cooling potentials were found in soybean (−0.450 kg CO2e m−2yr−1) and switchgrass (−0.367 kg CO2e m−2yr−1), with up to −0.265 kg CO2e m−2yr−1of localized climate cooling annually provided by different agroecosystems. We also demonstrated how diverse ecosystems, leaf canopy, and agronomic practices can affect surface reflectivity and provide another potential nature-based solution for reducing global warming at localized scales. -
Abstract Urban greening is often proposed for urban heat island (UHI) mitigation because vegetation provides shade and increases evapotranspiration. However, vegetation has lower albedo and higher emissivity than the bare soil it often replaces, which increases incoming energy fluxes. Here, we use the Weather Research and Forecasting model to quantify and compare the albedo and non‐albedo effects (i.e., changes in emissivity, surface roughness, and evaporative fluxes) of urban greening in the Los Angeles Basin under policy relevant urban greening scenarios. When albedo‐induced effects were included in the model, daytime surface temperatures in urban areas warmed by 0.70 ± 0.89°C with increases in the sensible heat flux outweighing increases in the latent heat flux from increased evapotranspiration. In contrast, daytime surface temperatures cooled by 0.27 ± 0.72°C when the albedo‐induced effects were ignored. At night, including albedo‐induced effects of urban greening resulted in only half the cooling modeled in the non‐albedo simulations. Near surface air temperatures also had contrasting model results, with nighttime cooling of 0.21 ± 0.47°C outweighing slight daytime warming of 0.04 ± 0.32°C in the non‐albedo simulations and daytime warming of 0.33 ± 0.41°C outweighing slight nighttime cooling of 0.05 ± 0.46°C in the albedo simulations. Our results reveal the critical role that albedo plays in determining the net surface climate effects of urban greening. Reductions in albedo from urban greening should be carefully considered by policy makers and urban planners, especially as high albedo roofs and pavements are simultaneously being deployed for UHI mitigation in many cities.
-
Abstract Earth systems models require gridded land surface properties to compute fluxes of water, energy, and carbon within the landscape and to the atmosphere. However, most parameter sets contain time-invariant properties despite their known variability. Here we present new MODerate Resolution Imaging Spectroradiometer (MODIS)-based land surface parameters (MOD-LSP) formatted for the Variable Infiltration Capacity (VIC) hydrologic model that account for seasonal and interannual variability and longer-term change over the continental United States, Mexico, and southern Canada at 0.0625° spatial resolution and monthly temporal resolution. MOD-LSP improves over previously-available parameter sets via: (1) land cover maps of higher native spatial resolution; (2) multiple versions corresponding to the land cover of years 1992, 2001, and 2011; (3) spatially-explicit mean annual cycles of land surface properties, including leaf area index, canopy fraction, and albedo, derived from 17 years of observations; and (4) additional 17-year time series of these properties. The MOD-LSP parameters are useful as inputs to the VIC model, as an example land surface scheme, to assess the hydrologic impacts of land cover change from interannual to decadal scales; and as stand-alone datasets characterizing the temporal variability of these properties as a function of land cover class.
-
Abstract Land‐use/cover change (LUCC) is an important driver of environmental change, occurring at the same time as, and often interacting with, global climate change. Reforestation and deforestation have been critical aspects of LUCC over the past two centuries and are widely studied for their potential to perturb the global carbon cycle. More recently, there has been keen interest in understanding the extent to which reforestation affects terrestrial energy cycling and thus surface temperature directly by altering surface physical properties (e.g., albedo and emissivity) and land–atmosphere energy exchange. The impacts of reforestation on land surface temperature and their mechanisms are relatively well understood in tropical and boreal climates, but the effects of reforestation on warming and/or cooling in temperate zones are less certain. This study is designed to elucidate the biophysical mechanisms that link land cover and surface temperature in temperate ecosystems. To achieve this goal, we used data from six paired eddy‐covariance towers over co‐located forests and grasslands in the temperate eastern United States, where radiation components, latent and sensible heat fluxes, and meteorological conditions were measured. The results show that, at the annual time scale, the surface of the forests is 1–2°C cooler than grasslands, indicating a substantial cooling effect of reforestation. The enhanced latent and sensible heat fluxes of forests have an average cooling effect of −2.5°C, which offsets the net warming effect (+1.5°C) of albedo warming (+2.3°C) and emissivity cooling effect (−0.8°C) associated with surface properties. Additional daytime cooling over forests is driven by local feedbacks to incoming radiation. We further show that the forest cooling effect is most pronounced when land surface temperature is higher, often exceeding −5°C. Our results contribute important observational evidence that reforestation in the temperate zone offers opportunities for local climate mitigation and adaptation.