skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reforestation and surface cooling in temperate zones: Mechanisms and implications
Abstract Land‐use/cover change (LUCC) is an important driver of environmental change, occurring at the same time as, and often interacting with, global climate change. Reforestation and deforestation have been critical aspects of LUCC over the past two centuries and are widely studied for their potential to perturb the global carbon cycle. More recently, there has been keen interest in understanding the extent to which reforestation affects terrestrial energy cycling and thus surface temperature directly by altering surface physical properties (e.g., albedo and emissivity) and land–atmosphere energy exchange. The impacts of reforestation on land surface temperature and their mechanisms are relatively well understood in tropical and boreal climates, but the effects of reforestation on warming and/or cooling in temperate zones are less certain. This study is designed to elucidate the biophysical mechanisms that link land cover and surface temperature in temperate ecosystems. To achieve this goal, we used data from six paired eddy‐covariance towers over co‐located forests and grasslands in the temperate eastern United States, where radiation components, latent and sensible heat fluxes, and meteorological conditions were measured. The results show that, at the annual time scale, the surface of the forests is 1–2°C cooler than grasslands, indicating a substantial cooling effect of reforestation. The enhanced latent and sensible heat fluxes of forests have an average cooling effect of −2.5°C, which offsets the net warming effect (+1.5°C) of albedo warming (+2.3°C) and emissivity cooling effect (−0.8°C) associated with surface properties. Additional daytime cooling over forests is driven by local feedbacks to incoming radiation. We further show that the forest cooling effect is most pronounced when land surface temperature is higher, often exceeding −5°C. Our results contribute important observational evidence that reforestation in the temperate zone offers opportunities for local climate mitigation and adaptation.  more » « less
Award ID(s):
1702996 1802726 1832959 1920908 1702029
PAR ID:
10453660
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
26
Issue:
6
ISSN:
1354-1013
Page Range / eLocation ID:
p. 3384-3401
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Restoring and preserving the world's forests are promising natural pathways to mitigate some aspects of climate change. In addition to regulating atmospheric carbon dioxide concentrations, forests modify surface and near‐surface air temperatures through biophysical processes. In the eastern United States (EUS), widespread reforestation during the 20th century coincided with an anomalous lack of warming, raising questions about reforestation's contribution to local cooling and climate mitigation. Using new cross‐scale approaches and multiple independent sources of data, we uncovered links between reforestation and the response of both surface and air temperature in the EUS. Ground‐ and satellite‐based observations showed that EUS forests cool the land surface by 1–2°C annually compared to nearby grasslands and croplands, with the strongest cooling effect during midday in the growing season, when cooling is 2–5°C. Young forests (20–40 years) have the strongest cooling effect on surface temperature. Surface cooling extends to the near‐surface air, with forests reducing midday air temperature by up to 1°C compared to nearby non‐forests. Analyses of historical land cover and air temperature trends showed that the cooling benefits of reforestation extend across the landscape. Locations surrounded by reforestation were up to 1°C cooler than neighboring locations that did not undergo land cover change, and areas dominated by regrowing forests were associated with cooling temperature trends in much of the EUS. Our work indicates reforestation contributed to the historically slow pace of warming in the EUS, underscoring reforestation's potential as a local climate adaptation strategy in temperate regions. 
    more » « less
  2. Abstract Among quantities of interest in paleoclimate, the mean annual air temperature, Ta, directly over the surface looms prominently. Most geologic estimates of past temperatures from continental regions, however, quantify temperatures of the soil or other material below the surface, Ts, and in general Ta < Ts. Both theory and data from the FLUXNET2015 data set of surface energy balance indicate systematic dependences of temperature differences ΔT = Ts − Ta and also of Bowen ratios—ratios of sensible to latent heat fluxes from surface to the atmosphere—on the nature of the land-surface cover. In cold regions, with mean annual temperatures ≲5 °C, latent heat flux tends to be small, and values of ΔT can be large, 3–5 °C or larger. Over wet surfaces, latent heat fluxes dominate sensible heat fluxes, and values of both ΔT and Bowen ratios commonly are small. By contrast, over arid surfaces that provide only limited moisture to the overlying atmosphere, the opposite holds. Both theory and observation suggest the following, albeit approximate, mean annual values of ΔT: for wetlands, 1 °C; forests, 1 ± 1 °C; shrublands, 3–4 °C; savannas, 3.5 °C < ΔT < 5.5 °C; grasslands, 1 °C where wet to 3 °C where arid; and deserts, 4–6 °C. As geological tools for inferring past land-surface conditions improve, these approximate values of ΔT will allow geologic estimates of past mean annual surface temperatures, Ts, to be translated into estimates of past mean annual air temperatures, Ta. 
    more » « less
  3. null (Ed.)
    Abstract Land-use and land-cover change (LULCC) is one of the most important forcings affecting climate in the past century. This study evaluates the global and regional LULCC impacts in 1950–2015 by employing an annually updated LULCC map in a coupled land–atmosphere–ocean model. The difference between LULCC and control experiments shows an overall land surface temperature (LST) increase by 0.48 K in the LULCC regions and a widespread LST decrease by 0.18 K outside the LULCC regions. A decomposed temperature metric (DTM) is applied to quantify the relative contribution of surface processes to temperature changes. Furthermore, while precipitation in the LULCC areas is reduced in agreement with declined evaporation, LULCC causes a southward displacement of the intertropical convergence zone (ITCZ) with a narrowing by 0.5°, leading to a tripole anomalous precipitation pattern over the warm pool. The DTM shows that the temperature response in LULCC regions results from the competing effect between increased albedo (cooling) and reduced evaporation (warming). The reduced evaporation indicates less atmospheric latent heat release in convective processes and thus a drier and cooler troposphere, resulting in a reduction in surface cooling outside the LULCC regions. The southward shift of the ITCZ implies a northward cross-equatorial energy transport anomaly in response to reduced latent/sensible heat of the atmosphere in the Northern Hemisphere, where LULCC is more intensive. Tropospheric cooling results in the equatorward shift of the upper-tropospheric westerly jet in both hemispheres, which, in turn, leads to an equatorward narrowing of the Hadley circulation and ITCZ. 
    more » « less
  4. Fire causes abrupt changes in vegetation properties and modifies flux exchanges between land and atmosphere at subseasonal to seasonal scales. Yet these shortterm fire effects on vegetation dynamics and surface energy balance have not been comprehensively investigated in the fire-coupled vegetation model. This study applies the SSiB4/TRIFFID-Fire (the Simplified Simple Biosphere Model coupled with the Top-down Representation of Interactive Foliage and Flora Including Dynamics with fire) model to study the short-term fire impact in southern Africa. Specifically, we aim to quantify how large impacts fire exerts on surface energy through disturbances on vegetation dynamics, how fire effects evolve during the fire season and the subsequent rainy season, and how surface-darkening effects play a role besides the vegetation change effects. We find fire causes an annual average reduction in grass cover by 4 %–8% for widespread areas between 5–20 S and a tree cover reduction by 1% at the southern periphery of tropical rainforests. The regional fire effects accumulate during June–October and peak in November, the beginning of the rainy season. After the fire season ends, the grass cover quickly returns to unburned conditions, while the tree fraction hardly recovers in one rainy season. The vegetation removal by fire has reduced the leaf area index (LAI) and gross primary productivity (GPP) by 3 %–5% and 5 %–7% annually. The exposure of bare soil enhances surface albedo and therefore decreases the absorption of shortwave radiation. Annual mean sensible heat has dropped by 1.4Wm−2, while the latent heat reduction is small (0.1Wm−2/ due to the evaporation. Surface temperature is increased by as much as 0.33K due to the decrease of sensible heat fluxes, and the warming would be enhanced when the surface-darkening effect is incorporated. Our results suggest that fire effects in grass-dominant areas diminish within 1 year due to the high resilience of grasses after fire. Yet fire effects in the periphery of tropical forests are irreversible within one growing season and can cause large-scale deforestation if accumulated for hundreds of years. 
    more » « less
  5. Abstract In this study, we investigate the air temperature response to land-use and land-cover change (LULCC; cropland expansion and deforestation) using subgrid land model output generated by a set of CMIP6 model simulations. Our study is motivated by the fact that ongoing land-use activities are occurring at local scales, typically significantly smaller than the resolvable scale of a grid cell in Earth system models. It aims to explore the potential for a multimodel approach to better characterize LULCC local climatic effects. On an annual scale, the CMIP6 models are in general agreement that croplands are warmer than primary and secondary land (psl; mainly forests, grasslands, and bare ground) in the tropics and cooler in the mid–high latitudes, except for one model. The transition from warming to cooling occurs at approximately 40°N. Although the surface heating potential, which combines albedo and latent heat flux effects, can explain reasonably well the zonal mean latitudinal subgrid temperature variations between crop and psl tiles in the historical simulations, it does not provide a good prediction on subgrid temperature for other land tile configurations (crop vs forest; grass vs forest) under Shared Socioeconomic Pathway 5–8.5 (SSP5–8.5) forcing scenarios. A subset of simulations with the CESM2 model reveals that latitudinal subgrid temperature variation is positively related to variation in net surface shortwave radiation and negatively related to variation in the surface energy redistribution factor, with a dominant role from the latter south of 30°N. We suggest that this emergent relationship can be used to benchmark the performance of land surface parameterizations and for prediction of local temperature response to LULCC. 
    more » « less