skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sustainability challenges for the social-environmental systems across the Asian Drylands Belt
Abstract This paper synthesizes the contemporary challenges for the sustainability of the social-environmental system (SES) across a geographically, environmentally, and geopolitically diverse region—the Asian Drylands Belt (ADB). This region includes 18 political entities, covering 10.3% of global land area and 30% of total global drylands. At the present time, the ADB is confronted with a unique set of environmental and socioeconomic changes including water shortage-related environmental challenges and dramatic institutional changes since the collapse of the Union of Soviet Socialist Republics. The SES of the ADB is assessed using a conceptual framework rooted in the three pillars of sustainability science: social, economic, and ecological systems. The complex dynamics are explored with biophysical, socioeconomic, institutional, and local context-dependent mechanisms with a focus on institutions and land use and land cover change (LULCC) as important drivers of SES dynamics. This paper also discusses the following five pressing, practical challenges for the sustainability of the ADB SES: (a) reduced water quantity and quality under warming, drying, and escalating extreme events, (b) continued, if not intensifying, geopolitical conflicts, (c) volatile, uncertain, and shifting socioeconomic structures, (d) globalization and cross-country influences, and (e) intensification and shifts in LULCC. To meet the varied challenges across the region, place-based, context-dependent transdisciplinary approaches are needed to focus on the human-environment interactions within and between regional landscapes with explicit consideration of specific forcings and regulatory mechanisms. Future work focused on this region should also assess the role of the following mechanisms that may moderate SES dynamics: socioeconomic regulating mechanisms, biophysical regulating mechanisms, regional and national institutional regulating mechanisms, and localized institutional regulating mechanisms.  more » « less
Award ID(s):
2019691
PAR ID:
10331545
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Environmental Research Letters
Volume:
17
Issue:
2
ISSN:
1748-9326
Page Range / eLocation ID:
023001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Megacities are socio-ecological systems (SES) that encompass complex interactions between residents, institutions, and natural resource management. These interactions are exacerbated by climate change as resources such as water become scarce or hazardous through drought and flooding. In order to develop pathways for improved sustainability, the disparate factors that create vulnerable conditions and outcomes must be visible to decision-makers. Nevertheless, for such decision-makers to manage vulnerability effectively, they need to define the salient boundaries of the urban SES, and the relevant biophysical, technological, and socio-institutional attributes that play critical roles in vulnerability dynamics. Here we explore the problem of hydrological risk in Mexico City, where vulnerabilities to flooding and water scarcity are interconnected temporally and spatially, yet the formal and informal institutions and actors involved in the production and management of vulnerability are divided into two discrete problem domains: land-use planning and water resource management. We analyze interviews with city officials working in both domains to understand their different perspectives on the dynamics of socio-hydrological risk, including flooding and water scarcity. We find governance gaps within land-use planning and water management that lead to hydro-social risk, stemming from a failure to address informal institutions that exacerbate vulnerability to flooding and water scarcity. Mandates in both sectors are overlapping and confusing, while socio-hydrological risk is externalized to the informal domain, making it ungoverned. Integrated water management approaches that recognize and incorporate informality are needed to reduce vulnerability to water scarcity and flooding. 
    more » « less
  2. Abstract Earlier studies of land use land cover change (LULCC) normally used only a specified LULCC map with no interannual variations. In this study, using an Atmospheric General Circulation Model (AGCM) coupled with a land surface model, biophysical impacts of LULCC on global and regional climate are investigated by using a LULCC map which covers 63 years from 1948 to 2010 with interannual variation. A methodology has been developed to convert a recently developed LULCC fraction map with 1° × 1° resolution to the AGCM grid points in which only one dominant type is allowed. Comprehensive evaluations are conducted to ensure consistency of the trend of the original LULCC fraction change and the trend of the fraction of grid point changes over different regions. The model was integrated with a potential vegetation map (CTL) and the map with LULCC, in which a set of surface parameters such as leaf area index, albedo and other soil and vegetation parameters were accordingly changed with interannual variation. The results indicate that the interannual LULCC map simulation is able to reproduce better interannual variability of surface temperature and rainfall when compared to the control simulation. LULCC causes negative effect on global precipitation, with the strongest significant signals over degraded regions such as East Asia, West Africa and South America, and some of these changes are consistent with observed regional anomalies for certain time periods. LULCC causes reduction in net radiation and evapotranspiration which leads to changes in monsoon circulation and variation in magnitude and pattern of moisture flux convergence and subsequent reduction in precipitation. Meanwhile, LULCC enhances surface warming during the summer in the LULCC regions due to greatly reduced evapotranspiration. In contradiction to the surface, upper troposphere temperatures are cool because of less latent heat released into the upper troposphere, which leads to weaker circulation in LULCC regions. 
    more » « less
  3. A significant number and range of challenges besetting sustainability can be traced to the actions and interactions of multiple autonomous agents (people mostly) and the entities they create (e.g., institutions, policies, social network) in the corresponding social-environmental systems (SES). To address these challenges, we need to understand decisions made and actions taken by agents, the outcomes of their actions, including the feedbacks on the corresponding agents and environment. The science of Agent-based Complex Systems—ACS science—has a significant potential to handle such challenges. The advantages of ACS science for sustainability are addressed by way of identifying the key elements and challenges in sustainability science, the generic features of ACS, and the key advances and challenges in modeling ACS. Artificial intelligence and data science promise to improve understanding of agents’ behaviors, detect SES structures, and formulate SES mechanisms. 
    more » « less
  4. A significant number and range of challenges besetting sustainability can be traced to the actions and interactions of multiple autonomous agents (people mostly) and the entities they create (e.g., institutions, policies, social network) in the corresponding social-environmental systems (SES). To address these challenges, we need to understand decisions made and actions taken by agents, the outcomes of their actions, including the feedbacks on the corresponding agents and environment. The science of complex adaptive systems—CAS science—has a significant potential to handle such challenges. We address the advantages of CAS science for sustainability by identifying the key elements and challenges in sustainability science, the generic features of CAS, and the key advances and challenges in modeling CAS. Artificial intelligence and data science combined with agent-based modeling promise to improve understanding of agents’ behaviors, detect SES structures, and formulate SES mechanisms. 
    more » « less
  5. null (Ed.)
    The conventional approach of policy interventions in water management that focus on the portions of the system that directly relate to water often lead to unintended consequences that potentially exacerbate water scarcity issues and present challenges to the future viability of many rural agricultural communities. This paper deploys a system dynamics model to illustrate how expanding the policy space of hydrology models to include socioeconomic feedbacks could address these challenges. In this regard, policies that can potentially mitigate general water scarcity in a region of the American Southwest in southern New Mexico are examined. We selected and tested policies with the potential to diminish water scarcity without compromising the system’s economic performance. These policies included supporting choices that reduce or limit the expansion of water-intensive crops, promoting workforce participation, encouraging investment in capital, and regulating land use change processes. The simulation results, after the proposed boundary expansion, unveiled intervention options not commonly exercised by water decision-makers, bolstering the argument that integrated approaches to water research that include socioeconomic feedbacks are crucial for the study of agricultural community resilience. 
    more » « less