skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: On pointwise decay of waves
This paper introduces some of the basic mechanisms relating the behavior of the spectral measure of Schrödinger operators near zero energy to the long-term decay and dispersion of the associated Schrödinger and wave evolutions. These principles are illustrated by means of the author’s work on decay of Schrödinger and wave equations under various types of perturbations, including those of the underlying metric. In particular, we consider local decay of solutions to the linear Schrödinger and wave equations on curved backgrounds that exhibit trapping. A particular application is waves on a Schwarzschild black hole spacetime. We elaborate on Price’s law of local decay that accelerates with the angular momentum, which has recently been settled by Hintz, also in the much more difficult Kerr black hole setting. While the author’s work on the same topic was conducted ten years ago, the global semiclassical representation techniques developed there have recently been applied by Krieger, Miao, and the author to the nonlinear problem of stability of blowup solutions to critical wave maps under non-equivariant perturbations.  more » « less
Award ID(s):
1902691
PAR ID:
10331677
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of mathematical physics
Volume:
62
Issue:
6
ISSN:
0022-2488
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We establish dispersive estimates and local decay estimates for the time evolution of non-self-adjoint matrix Schrödinger operators with threshold resonances in one space dimension. In particular, we show that the decay rates in the weighted setting are the same as in the regular case after subtracting a finite rank operator corresponding to the threshold resonances. Such matrix Schrödinger operators naturally arise from linearizing a focusing nonlinear Schrödinger equation around a solitary wave. It is known that the linearized operator for the 1D focusing cubic NLS equation exhibits a threshold resonance. We also include an observation of a favorable structure in the quadratic nonlinearity of the evolution equation for perturbations of solitary waves of the 1D focusing cubic NLS equation. 
    more » « less
  2. Abstract Fully localised three-dimensional solitary waves are steady water waves which are evanescent in every horizontal direction. Existence theories for fully localised three-dimensional solitary waves on water of finite depth have recently been published, and in this paper we establish their existence on deep water. The governing equations are reduced to a perturbation of the two-dimensional nonlinear Schrödinger equation, which admits a family of localised solutions. Two of these solutions are symmetric in both horizontal directions and an application of a suitable variant of the implicit-function theorem shows that they persist under perturbations. 
    more » « less
  3. Fractional evolution equations lack generally accessible and well-converged codes excepting anomalous diffusion. A particular equation of strong interest to the growing intersection of applied mathematics and quantum information science and technology is the fractional Schrödinger equation, which describes sub-and super-dispersive behavior of quantum wavefunctions induced by multiscale media. We derive a computationally efficient sixth-order split-step numerical method to converge the eigenfunctions of the FSE to arbitrary numerical precision for arbitrary fractional order derivative. We demonstrate applications of this code to machine precision for classic quantum problems such as the finite well and harmonic oscillator, which take surprising twists due to the non-local nature of the fractional derivative. For example, the evanescent wave tails in the finite well take a Mittag-Leffer-like form which decay much slower than the well-known exponential from integer-order derivative wave theories, enhancing penetration into the barrier and therefore quantum tunneling rates. We call this effect \emph{fractionally enhanced quantum tunneling}. This work includes an open source code for communities from quantum experimentalists to applied mathematicians to easily and efficiently explore the solutions of the fractional Schrödinger equation in a wide variety of practical potentials for potential realization in quantum tunneling enhancement and other quantum applications. 
    more » « less
  4. Abstract We study the (characteristic) Cauchy problem for the Maxwell‐Bloch equations of light‐matter interaction via asymptotics, under assumptions that prevent the generation of solitons. Our analysis clarifies some features of the sense in which physically‐motivated initial‐boundary conditions are satisfied. In particular, we present a proper Riemann‐Hilbert problem that generates the uniquecausalsolution to the Cauchy problem, that is, the solution vanishes outside of the light cone. Inside the light cone, we relate the leading‐order asymptotics to self‐similar solutions that satisfy a system of ordinary differential equations related to the Painlevé‐III (PIII) equation. We identify these solutions and show that they are related to a family of PIII solutions recently discovered in connection with several limiting processes involving the focusing nonlinear Schrödinger equation. We fully explain a resulting boundary layer phenomenon in which, even for smooth initial data (an incident pulse), the solution makes a sudden transition over an infinitesimally small propagation distance. At a formal level, this phenomenon has been described by other authors in terms of the PIII self‐similar solutions. We make this observation precise and for the first time we relate the PIII self‐similar solutions to the Cauchy problem. Our analysis of the asymptotic behavior satisfied by the optical field and medium density matrix reveals slow decay of the optical field in one direction that is actually inconsistent with the simplest version of scattering theory. Our results identify a precise generic condition on an optical pulse incident on an initially‐unstable medium sufficient for the pulse to stimulate the decay of the medium to its stable state. 
    more » « less
  5. This paper is devoted to a comprehensive analysis of a family of solutions of the focusing nonlinear Schrödinger equation called general rogue waves of infinite order. These solutions have recently been shown to describe various limit processes involving large-amplitude waves, and they have also appeared in some physical models not directly connected with nonlinear Schrödinger equations. We establish the following key property of these solutions: they are all in $$L^2(\mathbb{R})$$ with respect to the spatial variable but they exhibit anomalously slow temporal decay. In this paper, we define general rogue waves of infinite order, establish their basic exact and asymptotic properties, and provide computational tools for calculating them accurately. 
    more » « less