skip to main content

Title: Assessing the dependence structure between oceanographic, fluvial, and pluvial flooding drivers along the United States coastline
Abstract. Flooding is of particular concern in low-lying coastal zones that are prone to flooding impacts from multiple drivers, such as oceanographic (storm surge and wave), fluvial (excessive river discharge), and/or pluvial (surface runoff). In this study, we analyse, for the first time, the compound flooding potential along the contiguous United States (CONUS) coastline from all flooding drivers, using observations and reanalysis data sets. We assess the overall dependence from observations by using Kendall's rank correlation coefficient (τ) and tail (extremal) dependence (χ). Geographically, we find the highest dependence between different drivers at locations in the Gulf of Mexico, southeastern, and southwestern coasts. Regarding different driver combinations, the highest dependence exists between surge–waves, followed by surge–precipitation, surge–discharge, waves–precipitation, and waves–discharge. We also perform a seasonal dependence analysis (tropical vs. extra-tropical season), where we find higher dependence between drivers during the tropical season along the Gulf and parts of the East Coast and stronger dependence during the extra-tropical season on the West Coast. Finally, we compare the dependence structure of different combinations of flooding drivers, using observations and reanalysis data, and use the Kullback–Leibler (KL) divergence to assess significance in the differences of the tail dependence structure. We find, for example, that models underestimate the tail more » dependence between surge–discharge on the East and West coasts and overestimate tail dependence between surge–precipitation on the East Coast, while they underestimate it on the West Coast. The comprehensive analysis presented here provides new insights on where the compound flooding potential is relatively higher, which variable combinations are most likely to lead to compounding effects, duringwhich time of the year (tropical versus extra-tropical season) compoundflooding is more likely to occur, and how well reanalysis data capture thedependence structure between the different flooding drivers. « less
Authors:
; ; ; ;
Award ID(s):
1929382
Publication Date:
NSF-PAR ID:
10331683
Journal Name:
Hydrology and Earth System Sciences
Volume:
25
Issue:
12
Page Range or eLocation-ID:
6203 to 6222
ISSN:
1607-7938
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The interaction between storm surge and concurrent precipitation is poorly understood in many coastal regions. This paper investigates the potential compound effects from these two flooding drivers along the coast of China for the first time by using the most comprehensive records of storm surge and precipitation. Statistically significant dependence between flooding drivers exists at the majority of locations that are analysed, but the strength of the correlation varies spatially and temporally and depending on how extreme events are defined. In general, we find higher dependence at the south-eastern tide gauges (TGs) (latitude < 30∘ N) compared to the northern TGs. Seasonal variations in the dependence are also evident. Overall there are more sites with significant dependence in the tropical cyclone (TC) season, especially in the summer. Accounting for past sea level rise further increases the dependence between flooding drivers, and future sea level rise will hence likely lead to an increase in the frequency of compound events. We also find notable differences in the meteorological patterns associated with events where both drivers are extreme versus events where only one driver is extreme. Events with both extreme drivers at south-eastern TG sites are caused by low-pressure systems with similar characteristics across locations, including high precipitable watermore »content (PWC) and strong winds that generate high storm surge. Based on historical disaster damages records of Hong Kong, events with both extreme drivers account for the vast majority of damages and casualties, compared to univariate flooding events, where only one flooding driver occurred. Given the large coastal population and low capacity of drainage systems in many Chinese urban coastal areas, these findings highlight the necessity to incorporate compound flooding and its potential changes in a warming climate into risk assessments, urban planning, and the design of coastal infrastructure and flood defences.« less
  2. Abstract. In coastal regions, floods can arise through a combination of multipledrivers, including direct surface run-off, river discharge, storm surge, andwaves. In this study, we analyse compound flood potential in Europe andenvirons caused by these four main flooding sources using state-of-the-artdatabases with coherent forcing (i.e. ERA5). First, we analyse thesensitivity of the compound flooding potential to several factors: (1)sampling method, (2) time window to select the concurrent event of theconditioned driver, (3) dependence metrics, and (4) wave-driven sea leveldefinition. We observe higher correlation coefficients using annual maximathan peaks over threshold. Regarding the other factors, our results showsimilar spatial distributions of the compound flooding potential. Second, thedependence between the pairs of drivers using the Kendall rank correlationcoefficient and the joint occurrence are synthesized for coherent patterns ofcompound flooding potential using a clustering technique. This quantitativemulti-driver assessment not only distinguishes where overall compound floodingpotential is the highest, but also discriminates which driver combinations aremore likely to contribute to compound flooding. We identify that hotspots ofcompound flooding potential are located along the southern coast of the NorthAtlantic Ocean and the northern coast of the Mediterranean Sea.
  3. Abstract

    The western North-Atlantic coast experienced major coastal floods in recent years. Coastal floods are primarily composed of tides and storm surges due to tropical (TCs) and extra-tropical cyclones (ETCs). We present a reanalysis from 1988 to 2015 of extreme sea levels that explicitly include TCs for the western North-Atlantic coastline. Validation shows a good agreement between modeled and observed sea levels and demonstrates that the framework can capture large-scale variability in extreme sea levels. We apply the 28-year reanalysis to analyze spatiotemporal patterns. Along the US Atlantic coasts the contribution of tides can be significant, with the average contribution of tides during the 10 largest events up to 55% in some locations, whereas along the Mexican Southern Gulf coast, the average contribution of tides over the largest 10 events is generally below 25%. At the US Atlantic coast, ETCs are responsible for 8.5 out of the 10 largest extreme events, whereas at the Gulf Coast and Caribbean TCs dominate. During the TC season more TC-driven events exceed a 10-year return period. During winter, there is a peak in ETC-driven events. Future research directions include coupling the framework with synthetic tropical cyclone tracks and extension to the global scale.

  4. Compound flooding is a physical phenomenon that has become more destructive in recent years. Moreover, compound flooding is a broad term that envelops many different physical processes that can range from preconditioned, to multivariate, to temporally compounding, or spatially compounding. This research aims to analyze a specific case of compound flooding related to tropical cyclones where the compounding effect is on coastal flooding due to a combination of storm surge and river discharge. In recent years, such compound flood events have increased in frequency and magnitude, due to a number of factors such as sea-level rise from warming oceans. Therefore, the ability to model such events is of increasing urgency. At present, there is no holistic, integrated modeling system capable of simulating or forecasting compound flooding on a large regional or global scale, leading to the need to couple various existing models. More specifically, two more challenges in such a modeling effort are determining the primary model and accounting for the effect of adjacent watersheds that discharge to the same receiving water body in amplifying the impact of compound flooding from riverine discharge with storm surge when the scale of the model includes an entire coastal line. In this study,more »we investigated the possibility of using the Advanced Circulation (ADCIRC) model as the primary model to simulate the compounding effects of fluvial flooding and storm surge via loose one-way coupling with gage data through internal time-dependent flux boundary conditions. The performance of the ADCIRC model was compared with the Hydrologic Engineering Center- River Analysis System (HEC-RAS) model both at the watershed and global scales. Furthermore, the importance of including riverine discharges and the interactions among adjacent watersheds were quantified. Results showed that the ADCIRC model could reliably be used to model compound flooding on both a watershed scale and a regional scale. Moreover, accounting for the interaction of river discharge from multiple watersheds is critical in accurately predicting flood patterns when high amounts of riverine flow occur in conjunction with storm surge. Particularly, with storms such as Hurricane Harvey (2017), where river flows were near record levels, inundation patterns and water surface elevations were highly dependent on the incorporation of the discharge input from multiple watersheds. Such an effect caused extra and longer inundations in some areas during Hurricane Harvey. Comparisons with real gauge data show that adding internal flow boundary conditions into ADCIRC to account for river discharge from multiple watersheds significantly improves accuracy in predictions of water surface elevations during coastal flooding events.« less
  5. This paper evaluates the contribution of waves to the total predicted storm surges in a Hurricane Irma hindcast, using ADCIRC+SWAN and ADCIRC models. The contribution of waves is quantified by subtracting the water levels hindcasted by ADCIRC from those hindcasted by ADCIRC+SWAN, using OWI meteorological forcing in both models. Databases of water level time series, wave characteristic time series, and high-water marks are used to validate the model performance. Based on the application of our methodology to the coastline around Florida, a peninsula with unique geomorphic characteristics, we find that wave runup has the largest contribution to the total water levels on the south and northeast coasts. Waves increase the surge on the south and northeast coasts, due to large fetch and wave runups. On the west coast, the wave effect is not significant, due to limited fetch. However, significant wave heights become greater as the waves propagate into the deep inner gulf. The continental shelf on Florida’s west coast plays a critical role in decreasing the significant wave height and sheltering the coastal areas from large wave effects. Both models underpredict the high-water marks, but ADCIRC+SWAN reduces the underprediction and improves the parity with the observed data, although themore »scatter is slightly higher than that of ADCIRC.« less