Abstract The making of BaZrS3thin films by molecular beam epitaxy (MBE) is demonstrated. BaZrS3forms in the orthorhombic distorted‐perovskite structure with corner‐sharing ZrS6octahedra. The single‐step MBE process results in films smooth on the atomic scale, with near‐perfect BaZrS3stoichiometry and an atomically sharp interface with the LaAlO3substrate. The films grow epitaxially via two competing growth modes: buffered epitaxy, with a self‐assembled interface layer that relieves the epitaxial strain, and direct epitaxy, with rotated‐cube‐on‐cube growth that accommodates the large lattice constant mismatch between the oxide and the sulfide perovskites. This work sets the stage for developing chalcogenide perovskites as a family of semiconductor alloys with properties that can be tuned with strain and composition in high‐quality epitaxial thin films, as has been long‐established for other systems including Si‐Ge, III‐Vs, and II‐VIs. The methods demonstrated here also represent a revival of gas‐source chalcogenide MBE.
more »
« less
Graphene-driving novel strain relaxation towards AlN film and DUV photoelectronic devices
Abstract Graphene-driving strain-pre-store engineering enables the epitaxy of strain-free AlN film with low dislocation density for DUV-LED and the unique mechanism of strain-relaxation in QvdW epitaxy was demystified.
more »
« less
- Award ID(s):
- 1944312
- PAR ID:
- 10331746
- Date Published:
- Journal Name:
- Light: Science & Applications
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2047-7538
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Strain is powerful for discovery and manipulation of new phases of matter; however, elastic strains accessible to epitaxial films and bulk crystals are typically limited to small ( < 2 %), uniform, and often discrete values. This Perspective highlights emerging directions for strain and strain gradient engineering in free-standing single-crystalline membranes of quantum materials. Membranes enable large ( ∼ 10 %), continuously tunable strains and strain gradients via bending and rippling. Moreover, strain gradients break inversion symmetry to activate polar distortions, ferroelectricity, chiral spin textures, superconductivity, and topological states. Recent advances in membrane synthesis by remote epitaxy and sacrificial etch layers enable extreme strains in transition metal oxides, intermetallics, and Heusler compounds, expanding beyond the natively van der Waals (vdW) materials like graphene. We highlight emerging opportunities and challenges for strain and strain gradient engineering in membranes of non-vdW materials.more » « less
-
The structural, electronic, and optical properties of CdSe/CdS core–shell colloidal quantum dot molecules, a new class of coupled quantum dot dimers, are explored using atomistic approaches. Unlike the case of dimers grown by molecular beam epitaxy, simulated strain profile maps of free-standing colloidal dimers show negligible additional strain resulting from the attachment. The electronic properties of the relaxed dimers are described within a semiempirical pseudopotential model combined with the Bethe–Salpeter equation within the static screening approximation to account for electron–hole correlations. The interplay of strain, hybridization (tunneling splitting), quantum confinement, and electron–hole binding energies on the optical properties is analyzed and discussed. The effects of the dimensions of the neck connecting the two quantum dot building blocks, as well as the shell thickness, are studied.more » « less
-
Abstract In a material prone to a nematic instability, anisotropic strain in principle provides a preferred symmetry-breaking direction for the electronic nematic state to follow. This is consistent with experimental observations, where electronic nematicity and structural anisotropy typically appear hand-in-hand. In this work, we discover that electronic nematicity can be locally decoupled from the underlying structural anisotropy in strain-engineered iron-selenide (FeSe) thin films. We use heteroepitaxial molecular beam epitaxy to grow FeSe with a nanoscale network of modulations that give rise to spatially varying strain. We map local anisotropic strain by analyzing scanning tunneling microscopy topographs, and visualize electronic nematic domains from concomitant spectroscopic maps. While the domains form so that the energy of nemato-elastic coupling is minimized, we observe distinct regions where electronic nematic ordering fails to flip direction, even though the underlying structural anisotropy is locally reversed. The findings point towards a nanometer-scale stiffness of the nematic order parameter.more » « less
An official website of the United States government

