Biological supramolecular assemblies, such as phospholipid bilayer membranes, have been used to demonstrate signal processing via short-term synaptic plasticity (STP) in the form of paired pulse facilitation and depression, emulating the brain’s efficiency and flexible cognitive capabilities. However, STP memory in lipid bilayers is volatile and cannot be stored or accessed over relevant periods of time, a key requirement for learning. Using droplet interface bilayers (DIBs) composed of lipids, water and hexadecane, and an electrical stimulation training protocol featuring repetitive sinusoidal voltage cycling, we show that DIBs displaying memcapacitive properties can also exhibit persistent synaptic plasticity in the form of long-term potentiation (LTP) associated with capacitive energy storage in the phospholipid bilayer. The time scales for the physical changes associated with the LTP range between minutes and hours, and are substantially longer than previous STP studies, where stored energy dissipated after only a few seconds. STP behavior is the result of reversible changes in bilayer area and thickness. On the other hand, LTP is the result of additional molecular and structural changes to the zwitterionic lipid headgroups and the dielectric properties of the lipid bilayer that result from the buildup of an increasingly asymmetric charge distribution at the bilayer interfaces.
more »
« less
Investigation of the Electrical properties of Phosphatidylserine Lipid Bilayer Membranes
In this work we investigate the electrical properties of phospholipid bilayer membranes (LBMs) formed from phosphatidylserine by analyzing two experimental setups. The Electrochemical Impedance Spectra (EIS) of phosphatidylserine show that a lipid bilayer membrane formed from this phospholipid has an average specific electrical resistance of 3.466 k Ω.cm 2 and an average capacitance of 0.385 µF/cm 2 . Some of the major factors that affect the LBM resistance include electroporation, the method of deposition, and the surface tension in microchannels for supported LBMs. Therefore, wide apertures remain the most accurate method for supporting LBMs.
more »
« less
- Award ID(s):
- 2000685
- PAR ID:
- 10331754
- Date Published:
- Journal Name:
- Proceeding of the 2022 IEEE Southeast Conference
- Page Range / eLocation ID:
- 706 to 710
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The electrical properties of polycrystalline graphene grown by chemical vapor deposition (CVD) are determined by grain-related parameters—average grain size, single-crystalline grain sheet resistance, and grain boundary (GB) resistivity. However, extracting these parameters still remains challenging because of the difficulty in observing graphene GBs and decoupling the grain sheet resistance and GB resistivity. In this work, we developed an electrical characterization method that can extract the average grain size, single-crystalline grain sheet resistance, and GB resistivity simultaneously. We observed that the material property, graphene sheet resistance, could depend on the device dimension and developed an analytical resistance model based on the cumulative distribution function of the gamma distribution, explaining the effect of the GB density and distribution in the graphene channel. We applied this model to CVD-grown monolayer graphene by characterizing transmission-line model patterns and simultaneously extracted the average grain size (~5.95 μm), single-crystalline grain sheet resistance (~321 Ω/sq), and GB resistivity (~18.16 kΩ-μm) of the CVD-graphene layer. The extracted values agreed well with those obtained from scanning electron microscopy images of ultraviolet/ozone-treated GBs and the electrical characterization of graphene devices with sub-micrometer channel lengths.more » « less
-
Atomistic molecular dynamics simulations of concentrated protein solutions in the presence of a phospholipid bilayer are presented to gain insights into the dynamics and interactions at the cytosol–membrane interface. The main finding is that proteins that are not known to specifically interact with membranes are preferentially excluded from the membrane, leaving a depletion zone near the membrane surface. As a consequence, effective protein concentrations increase, leading to increased protein contacts and clustering, whereas protein diffusion becomes faster near the membrane for proteins that do occasionally enter the depletion zone. Since protein–membrane contacts are infrequent and short-lived in this study, the structure of the lipid bilayer remains largely unaffected by the crowded protein solution, but when proteins do contact lipid head groups, small but statistically significant local membrane curvature is induced, on average.more » « less
-
Supported lipid bilayers are often used as model systems for studying interactions of biological membranes with protein or nanoparticles. A supported lipid bilayer is a phospholipid bilayer built on a solid substrate. The latter is typically made of silica or a metal oxide due to the ease of its formation and range of compatible measurement techniques. Recently, a solvent-assisted method involving supported lipid bilayer formation has allowed the extension of compatible substrate materials to include noble metals such as gold. Here, we examine the influence of substrate composition (SiO2 vs Au) on the interactions between anionic ligand-coated Au nanoparticles or cytochrome c and zwitterionic supported lipid bilayers using quartz crystal microbalance with dissipation monitoring. We find that anionic nanoparticles and cytochrome c have higher adsorption to bilayers formed on Au relative to those on SiO2 substrates. We examine the substrate-dependence of nanoparticle adsorption with DLVO theory and all-atom simulations, and find that the stronger attractive van der Waals and weaker repulsive electrostatic forces between anionic nanoparticles and Au substrates vs anionic nanoparticles and SiO2 substrates could be responsible for the change in adsorption observed. Our results also indicate that the underlying substrate material influences the degree to which nanoscale analytes interact with supported lipid bilayers; therefore, interpretation of the supported lipid bilayer model system should be conducted with understanding of support properties.more » « less
-
Abstract Cell membranes are composed of both bilayer-supporting and non-bilayer phospholipids, with the latter’s negative intrinsic curvature aiding in membrane trafficking and the dynamics of membrane proteins. Phospholipid metabolism has long been recognized to maintain membrane fluidity, but whether it also acts to maintain the function of high-curvature lipids is not resolved. Here, we find that cells grown under hydrostatic pressure – used to artificially reduce lipid curvature – maintain lipidome curvature through metabolic acclimation. We first observed that manipulation of the lipidome curvature via the phosphatidylethanolamine (PE) to phosphatidylcholine (PC) ratio affects high-pressure growth and viability of yeast independently of membrane fluidity. In wild-type cells, X-ray scattering measurements revealed an increased propensity for lipid extracts to form non-lamellar phases after extended pressure incubations. Unexpectedly, this change in phase behavior was not due to increased levels of PE, but of phosphatidylinositol (PI), the only major phospholipid class whose curvature had not been previously characterized. We found that PI is a non-bilayer lipid, with a negative curvature intermediate to that of PE and PC. Accounting for PI, mean lipidome curvature was defended in response to pressure by two distantly related yeasts. Lipidome curvature also responded to pressure in a human cancer cell line through ether phospholipid metabolism and chain remodeling, but not in bacterial cells. These findings indicate that eukaryotic phospholipid metabolism uses diverse mechanisms to maintain curvature frustration in cell membranes.more » « less
An official website of the United States government

