skip to main content


Title: Deep Learning or Deep Ignorance? Comparing Untrained Recurrent Models in Educational Contexts
The development and application of deep learning method- ologies has grown within educational contexts in recent years. Perhaps attributable, in part, to the large amount of data that is made avail- able through the adoption of computer-based learning systems in class- rooms and larger-scale MOOC platforms, many educational researchers are leveraging a wide range of emerging deep learning approaches to study learning and student behavior in various capacities. Variations of recurrent neural networks, for example, have been used to not only pre- dict learning outcomes but also to study sequential and temporal trends in student data; it is commonly believed that they are able to learn high- dimensional representations of learning and behavioral constructs over time, such as the evolution of a students’ knowledge state while working through assigned content. Recent works, however, have started to dis- pute this belief, instead finding that it may be the model’s complexity that leads to improved performance in many prediction tasks and that these methods may not inherently learn these temporal representations through model training. In this work, we explore these claims further in the context of detectors of student affect as well as expanding on exist- ing work that explored benchmarks in knowledge tracing. Specifically, we observe how well trained models perform compared to deep learning networks where training is applied only to the output layer. While the highest results of prior works utilizing trained recurrent models are found to be superior, the application of our untrained-versions perform compa- rably well, outperforming even previous non-deep learning approaches.  more » « less
Award ID(s):
1903304
PAR ID:
10331809
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 23rd International Conference on Artificial Intelligence in Education
Page Range / eLocation ID:
in press
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The development and application of deep learning method- ologies has grown within educational contexts in recent years. Perhaps attributable, in part, to the large amount of data that is made avail- able through the adoption of computer-based learning systems in class- rooms and larger-scale MOOC platforms, many educational researchers are leveraging a wide range of emerging deep learning approaches to study learning and student behavior in various capacities. Variations of recurrent neural networks, for example, have been used to not only pre- dict learning outcomes but also to study sequential and temporal trends in student data; it is commonly believed that they are able to learn high- dimensional representations of learning and behavioral constructs over time, such as the evolution of a students' knowledge state while working through assigned content. Recent works, however, have started to dis- pute this belief, instead nding that it may be the model's complexity that leads to improved performance in many prediction tasks and that these methods may not inherently learn these temporal representations through model training. In this work, we explore these claims further in the context of detectors of student a ect as well as expanding on exist- ing work that explored benchmarks in knowledge tracing. Speci cally, we observe how well trained models perform compared to deep learning networks where training is applied only to the output layer. While the highest results of prior works utilizing trained recurrent models are found to be superior, the application of our untrained-versions perform compa- rably well, outperforming even previous non-deep learning approaches. 
    more » « less
  2. The development and application of deep learning method- ologies has grown within educational contexts in recent years. Perhaps attributable, in part, to the large amount of data that is made avail- able through the adoption of computer-based learning systems in class- rooms and larger-scale MOOC platforms, many educational researchers are leveraging a wide range of emerging deep learning approaches to study learning and student behavior in various capacities. Variations of recurrent neural networks, for example, have been used to not only pre- dict learning outcomes but also to study sequential and temporal trends in student data; it is commonly believed that they are able to learn high- dimensional representations of learning and behavioral constructs over time, such as the evolution of a students’ knowledge state while working through assigned content. Recent works, however, have started to dis- pute this belief, instead finding that it may be the model’s complexity that leads to improved performance in many prediction tasks and that these methods may not inherently learn these temporal representations through model training. In this work, we explore these claims further in the context of detectors of student affect as well as expanding on exist- ing work that explored benchmarks in knowledge tracing. Specifically, we observe how well trained models perform compared to deep learning networks where training is applied only to the output layer. While the highest results of prior works utilizing trained recurrent models are found to be superior, the application of our untrained-versions perform compa- rably well, outperforming even previous non-deep learning approaches. Keywords: Deep Learning · LSTM · Echo State Network · Affect · Knowledge Tracing. 
    more » « less
  3. Spiking neural networks (SNNs) well support spatio-temporal learning and energy-efficient event-driven hardware neuromorphic processors. As an important class of SNNs, recurrent spiking neural networks (RSNNs) possess great computational power. However, the practical application of RSNNs is severely limited by challenges in training. Biologically-inspired unsupervised learning has limited capability in boosting the performance of RSNNs. On the other hand, existing backpropagation (BP) methods suffer from high complexity of unfolding in time, vanishing and exploding gradients, and approximate differentiation of discontinuous spiking activities when applied to RSNNs. To enable supervised training of RSNNs under a well-defined loss function, we present a novel Spike-Train level RSNNs Backpropagation (ST-RSBP) algorithm for training deep RSNNs. The proposed ST-RSBP directly computes the gradient of a rate-coded loss function defined at the output layer of the network w.r.t tunable parameters. The scalability of ST-RSBP is achieved by the proposed spike-train level computation during which temporal effects of the SNN is captured in both the forward and backward pass of BP. Our ST-RSBP algorithm can be broadly applied to RSNNs with a single recurrent layer or deep RSNNs with multiple feedforward and recurrent layers. Based upon challenging speech and image datasets including TI46, N-TIDIGITS, Fashion-MNIST and MNIST, ST-RSBP is able to train SNNs with an accuracy surpassing that of the current state-of-the-art SNN BP algorithms and conventional non-spiking deep learning models. 
    more » « less
  4. null (Ed.)
    Deep neural networks give state-of-the-art accuracy for reconstructing images from few and noisy measurements, a problem arising for example in accelerated magnetic resonance imaging (MRI). However, recent works have raised concerns that deep-learning-based image reconstruction methods are sensitive to perturbations and are less robust than traditional methods: Neural networks (i) may be sensitive to small, yet adversarially-selected perturbations, (ii) may perform poorly under distribution shifts, and (iii) may fail to recover small but important features in an image. In order to understand the sensitivity to such perturbations, in this work, we measure the robustness of different approaches for image reconstruction including trained and un-trained neural networks as well as traditional sparsity-based methods. We find, contrary to prior works, that both trained and un-trained methods are vulnerable to adversarial perturbations. Moreover, both trained and un-trained methods tuned for a particular dataset suffer very similarly from distribution shifts. Finally, we demonstrate that an image reconstruction method that achieves higher reconstruction quality, also performs better in terms of accurately recovering fine details. Our results indicate that the state-of-the-art deep-learning-based image reconstruction methods provide improved performance than traditional methods without compromising robustness. 
    more » « less
  5. The increased usage of computer-based learning platforms and online tools in classrooms presents new opportunities to not only study the underlying constructs involved in the learning process, but also use this information to identify and aid struggling students. Many learning platforms, particularly those driving or supplementing instruction, are only able to provide aid to students who interact with the system. With this in mind, student persistence emerges as a prominent learning construct contributing to students success when learning new material. Conversely, high persistence is not always productive for students, where additional practice does not help the student move toward a state of mastery of the material. In this paper, we apply a transfer learning methodology using deep learning and traditional modeling techniques to study high and low representations of unproductive persistence. We focus on two prominent problems in the fields of educational data mining and learner analytics representing low persistence, characterized as student "stopout," and unproductive high persistence, operationalized through student "wheel spinning," in an effort to better understand the relationship between these measures of unproductive persistence (i.e. stopout and wheel spinning) and develop early detectors of these behaviors. We find that models developed to detect each within and across-assignment stopout and wheel spinning are able to learn sets of features that generalize to predict the other. We further observe how these models perform at each learning opportunity within student assignments to identify when interventions may be deployed to best aid students who are likely to exhibit unproductive persistence. 
    more » « less