skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep Learning or Deep Ignorance? Comparing Untrained Recurrent Models in Educational Contexts.
The development and application of deep learning method- ologies has grown within educational contexts in recent years. Perhaps attributable, in part, to the large amount of data that is made avail- able through the adoption of computer-based learning systems in class- rooms and larger-scale MOOC platforms, many educational researchers are leveraging a wide range of emerging deep learning approaches to study learning and student behavior in various capacities. Variations of recurrent neural networks, for example, have been used to not only pre- dict learning outcomes but also to study sequential and temporal trends in student data; it is commonly believed that they are able to learn high- dimensional representations of learning and behavioral constructs over time, such as the evolution of a students’ knowledge state while working through assigned content. Recent works, however, have started to dis- pute this belief, instead finding that it may be the model’s complexity that leads to improved performance in many prediction tasks and that these methods may not inherently learn these temporal representations through model training. In this work, we explore these claims further in the context of detectors of student affect as well as expanding on exist- ing work that explored benchmarks in knowledge tracing. Specifically, we observe how well trained models perform compared to deep learning networks where training is applied only to the output layer. While the highest results of prior works utilizing trained recurrent models are found to be superior, the application of our untrained-versions perform compa- rably well, outperforming even previous non-deep learning approaches. Keywords: Deep Learning · LSTM · Echo State Network · Affect · Knowledge Tracing.  more » « less
Award ID(s):
1931523
PAR ID:
10355033
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
AIED 2022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The development and application of deep learning method- ologies has grown within educational contexts in recent years. Perhaps attributable, in part, to the large amount of data that is made avail- able through the adoption of computer-based learning systems in class- rooms and larger-scale MOOC platforms, many educational researchers are leveraging a wide range of emerging deep learning approaches to study learning and student behavior in various capacities. Variations of recurrent neural networks, for example, have been used to not only pre- dict learning outcomes but also to study sequential and temporal trends in student data; it is commonly believed that they are able to learn high- dimensional representations of learning and behavioral constructs over time, such as the evolution of a students’ knowledge state while working through assigned content. Recent works, however, have started to dis- pute this belief, instead finding that it may be the model’s complexity that leads to improved performance in many prediction tasks and that these methods may not inherently learn these temporal representations through model training. In this work, we explore these claims further in the context of detectors of student affect as well as expanding on exist- ing work that explored benchmarks in knowledge tracing. Specifically, we observe how well trained models perform compared to deep learning networks where training is applied only to the output layer. While the highest results of prior works utilizing trained recurrent models are found to be superior, the application of our untrained-versions perform compa- rably well, outperforming even previous non-deep learning approaches. 
    more » « less
  2. The development and application of deep learning method- ologies has grown within educational contexts in recent years. Perhaps attributable, in part, to the large amount of data that is made avail- able through the adoption of computer-based learning systems in class- rooms and larger-scale MOOC platforms, many educational researchers are leveraging a wide range of emerging deep learning approaches to study learning and student behavior in various capacities. Variations of recurrent neural networks, for example, have been used to not only pre- dict learning outcomes but also to study sequential and temporal trends in student data; it is commonly believed that they are able to learn high- dimensional representations of learning and behavioral constructs over time, such as the evolution of a students' knowledge state while working through assigned content. Recent works, however, have started to dis- pute this belief, instead nding that it may be the model's complexity that leads to improved performance in many prediction tasks and that these methods may not inherently learn these temporal representations through model training. In this work, we explore these claims further in the context of detectors of student a ect as well as expanding on exist- ing work that explored benchmarks in knowledge tracing. Speci cally, we observe how well trained models perform compared to deep learning networks where training is applied only to the output layer. While the highest results of prior works utilizing trained recurrent models are found to be superior, the application of our untrained-versions perform compa- rably well, outperforming even previous non-deep learning approaches. 
    more » « less
  3. The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in math- ematics, is a well-established and proven approach in learn- ing analytics. In this work, we report on our analysis exam- ining the generalizability of BKT models across academic years attributed to ”detector rot.” We compare the gen- eralizability of Knowledge Training (KT) models by com- paring model performance in predicting student knowledge within the academic year and across academic years. Models were trained on data from two popular open-source curric- ula available through Open Educational Resources. We ob- served that the models generally were highly performant in predicting student learning within an academic year, whereas certain academic years were more generalizable than other academic years. We posit that the Knowledge Tracing mod- els are relatively stable in terms of performance across aca- demic years yet can still be susceptible to systemic changes and underlying learner behavior. As indicated by the evi- dence in this paper, we posit that learning platforms lever- aging KT models need to be mindful of systemic changes or drastic changes in certain user demographics. 
    more » « less
  4. The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in math- ematics, is a well-established and proven approach in learn- ing analytics. In this work, we report on our analysis exam- ining the generalizability of BKT models across academic years attributed to ”detector rot.” We compare the gen- eralizability of Knowledge Training (KT) models by com- paring model performance in predicting student knowledge within the academic year and across academic years. Models were trained on data from two popular open-source curric- ula available through Open Educational Resources. We ob- served that the models generally were highly performant in predicting student learning within an academic year, whereas certain academic years were more generalizable than other academic years. We posit that the Knowledge Tracing mod- els are relatively stable in terms of performance across aca- demic years yet can still be susceptible to systemic changes and underlying learner behavior. As indicated by the evi- dence in this paper, we posit that learning platforms lever- aging KT models need to be mindful of systemic changes or drastic changes in certain user demographics. 
    more » « less
  5. The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in mathematics, is a well-established and proven approach in learning analytics. In this work, we report on our analysis examining the generalizability of BKT models across academic years attributed to ”detector rot.” We compare the generalizability of Knowledge Training (KT) models by comparing model performance in predicting student knowledge within the academic year and across academic years. Models were trained on data from two popular open-source curricula available through Open Educational Resources. We observed that the models generally were highly performant in predicting student learning within an academic year, whereas certain academic years were more generalizable than other academic years. We posit that the Knowledge Tracing models are relatively stable in terms of performance across academic years yet can still be susceptible to systemic changes and underlying learner behavior. As indicated by the evidence in this paper, we posit that learning platforms leveraging KT models need to be mindful of systemic changes or drastic changes in certain user demographics. 
    more » « less