skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Association of Neuroimaging Data with Behavioral Variables: A Class of Multivariate Methods and Their Comparison Using Multi-Task FMRI Data
It is becoming increasingly common to collect multiple related neuroimaging datasets either from different modalities or from different tasks and conditions. In addition, we have non-imaging data such as cognitive or behavioral variables, and it is through the association of these two sets of data—neuroimaging and non-neuroimaging—that we can understand and explain the evolution of neural and cognitive processes, and predict outcomes for intervention and treatment. Multiple methods for the joint analysis or fusion of multiple neuroimaging datasets or modalities exist; however, methods for the joint analysis of imaging and non-imaging data are still in their infancy. Current approaches for identifying brain networks related to cognitive assessments are still largely based on simple one-to-one correlation analyses and do not use the cross information available across multiple datasets. This work proposes two approaches based on independent vector analysis (IVA) to jointly analyze the imaging datasets and behavioral variables such that multivariate relationships across imaging data and behavioral features can be identified. The simulation results show that our proposed methods provide better accuracy in identifying associations across imaging and behavioral components than current approaches. With functional magnetic resonance imaging (fMRI) task data collected from 138 healthy controls and 109 patients with schizophrenia, results reveal that the central executive network (CEN) estimated in multiple datasets shows a strong correlation with the behavioral variable that measures working memory, a result that is not identified by traditional approaches. Most of the identified fMRI maps also show significant differences in activations across healthy controls and patients potentially providing a useful signature of mental disorders.  more » « less
Award ID(s):
2112455 1631838
PAR ID:
10331816
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Sensors
Volume:
22
Issue:
3
ISSN:
1424-8220
Page Range / eLocation ID:
1224
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Brain signals can be measured using multiple imaging modalities, such as magnetic resonance imaging (MRI)-based techniques. Different modalities convey distinct yet complementary information; thus, their joint analyses can provide valuable insight into how the brain functions in both healthy and diseased conditions. Data-driven approaches have proven most useful for multimodal fusion as they minimize assumptions imposed on the data, and there are a number of methods that have been developed to uncover relationships across modalities. However, none of these methods, to the best of our knowledge, can discover “one-to-many associations”, meaning one component from one modality is linked with more than one component from another modality. However, such “one-to-many associations” are likely to exist, since the same brain region can be involved in multiple neurological processes. Additionally, most existing data fusion methods require the signal subspace order to be identical for all modalities—a severe restriction for real-world data of different modalities. Here, we propose a new fusion technique—the consecutive independence and correlation transform (C-ICT) model—which successively performs independent component analysis and independent vector analysis and is uniquely flexible in terms of the number of datasets, signal subspace order, and the opportunity to find “one-to-many associations”. We apply C-ICT to fuse diffusion MRI, structural MRI, and functional MRI datasets collected from healthy controls (HCs) and patients with schizophrenia (SZs). We identify six interpretable triplets of components, each of which consists of three associated components from the three modalities. Besides, components from these triplets that show significant group differences between the HCs and SZs are identified, which could be seen as putative biomarkers in schizophrenia. 
    more » « less
  2. Abstract Face perception is a fundamental aspect of human social interaction, yet most research on this topic has focused on single modalities and specific aspects of face perception. Here, we present a comprehensive multimodal dataset for examining facial emotion perception and judgment. This dataset includes EEG data from 97 unique neurotypical participants across 8 experiments, fMRI data from 19 neurotypical participants, single-neuron data from 16 neurosurgical patients (22 sessions), eye tracking data from 24 neurotypical participants, behavioral and eye tracking data from 18 participants with ASD and 15 matched controls, and behavioral data from 3 rare patients with focal bilateral amygdala lesions. Notably, participants from all modalities performed the same task. Overall, this multimodal dataset provides a comprehensive exploration of facial emotion perception, emphasizing the importance of integrating multiple modalities to gain a holistic understanding of this complex cognitive process. This dataset serves as a key missing link between human neuroimaging and neurophysiology literature, and facilitates the study of neuropsychiatric populations. 
    more » « less
  3. ABSTRACT With the increasing availability of large‐scale multimodal neuroimaging datasets, it is necessary to develop data fusion methods which can extract cross‐modal features. A general framework, multidataset independent subspace analysis (MISA), has been developed to encompass multiple blind source separation approaches and identify linked cross‐modal sources in multiple datasets. In this work, we utilized the multimodal independent vector analysis (MMIVA) model in MISA to directly identify meaningful linked features across three neuroimaging modalities—structural magnetic resonance imaging (MRI), resting state functional MRI and diffusion MRI—in two large independent datasets, one comprising of control subjects and the other including patients with schizophrenia. Results show several linked subject profiles (sources) that capture age‐associated decline, schizophrenia‐related biomarkers, sex effects, and cognitive performance. For sources associated with age, both shared and modality‐specific brain‐age deltas were evaluated for association with non‐imaging variables. In addition, each set of linked sources reveals a corresponding set of cross‐modal spatial patterns that can be studied jointly. We demonstrate that the MMIVA fusion model can identify linked sources across multiple modalities, and that at least one set of linked, age‐related sources replicates across two independent and separately analyzed datasets. The same set also presented age‐adjusted group differences, with schizophrenia patients indicating lower multimodal source levels. Linked sets associated with sex and cognition are also reported for the UK Biobank dataset. 
    more » « less
  4. Large‐scale analysis of functional connectivity within intrinsic brain networks using functional magnetic resonance imaging (fMRI) data has been widely used for identifying biomarkers in various psychiatric disorders. While the emerging access to large neuroimaging datasets provides unprecedented opportunities for exploring brain functions, they also pose significant computational complexity challenges due to the large amount of inherent variability across individuals and the complexity of brain activity patterns. To address these challenges, this paper introduces two novel constrained ICA methods, arc‐EBM and minc‐EBM, designed to overcome the computational complexity issue by incorporating prior information into the analysis framework. The proposed methods preserve the subject variability by adaptively selecting the constrained parameters for different functional networks and individuals, while also allowing estimation flexibility for activities not covered by the prior information through the concept of free components. Our methods are shown to enhance the precision of functional network estimation and improve the capture of subject variability across different cohorts. We evaluate the proposed methods using both synthetic and real fMRI data. By applying the proposed methods to a resting‐state fMRI dataset including 179 subjects, both algorithms successfully reveal significant group differences in functional network connectivity between healthy controls and schizophrenia patients. The observed group differences, particularly the abnormal connectivity alterations in networks involving the thalamus, subthalamus/hypothalamus, and superior temporal gyrus, align with findings from previous clinical studies. Furthermore, our results demonstrate that the constraint parameters adaptively selected by arc‐EBM reveal more diverse resting‐state network structures in individuals with schizophrenia compared with healthy controls. This finding is consistent with prior studies and suggests that the selected constraint parameters could serve as potential biomarkers for mental disorder diagnosis. 
    more » « less
  5. iscovering components that are shared in multiple datasets, next to dataset-specific features, has great potential for studying the relationships between different subjects or tasks in functional Magnetic Resonance Imaging (fMRI) data. Coupled matrix and tensor factorization approaches have been useful for flexible data fusion, or decomposition to extract features that can be used in multiple ways. However, existing methods do not directly recover shared and dataset-specific components, which requires post-processing steps involving additional hyperparameter selection. In this paper, we propose a tensor-based framework for multi-task fMRI data fusion, using a partially constrained canonical polyadic (CP) decomposition model. Differently from previous approaches, the proposed method directly recovers shared and dataset-specific components, leading to results that are directly interpretable. A strategy to select a highly reproducible solution to the decomposition is also proposed. We evaluate the proposed methodology on real fMRI data of three tasks, and show that the proposed method finds meaningful components that clearly identify group differences between patients with schizophrenia and healthy controls. 
    more » « less