skip to main content

This content will become publicly available on February 1, 2023

Title: Association of Neuroimaging Data with Behavioral Variables: A Class of Multivariate Methods and Their Comparison Using Multi-Task FMRI Data
It is becoming increasingly common to collect multiple related neuroimaging datasets either from different modalities or from different tasks and conditions. In addition, we have non-imaging data such as cognitive or behavioral variables, and it is through the association of these two sets of data—neuroimaging and non-neuroimaging—that we can understand and explain the evolution of neural and cognitive processes, and predict outcomes for intervention and treatment. Multiple methods for the joint analysis or fusion of multiple neuroimaging datasets or modalities exist; however, methods for the joint analysis of imaging and non-imaging data are still in their infancy. Current approaches for identifying brain networks related to cognitive assessments are still largely based on simple one-to-one correlation analyses and do not use the cross information available across multiple datasets. This work proposes two approaches based on independent vector analysis (IVA) to jointly analyze the imaging datasets and behavioral variables such that multivariate relationships across imaging data and behavioral features can be identified. The simulation results show that our proposed methods provide better accuracy in identifying associations across imaging and behavioral components than current approaches. With functional magnetic resonance imaging (fMRI) task data collected from 138 healthy controls and 109 patients with schizophrenia, more » results reveal that the central executive network (CEN) estimated in multiple datasets shows a strong correlation with the behavioral variable that measures working memory, a result that is not identified by traditional approaches. Most of the identified fMRI maps also show significant differences in activations across healthy controls and patients potentially providing a useful signature of mental disorders. « less
Authors:
; ; ;
Award ID(s):
2112455
Publication Date:
NSF-PAR ID:
10331816
Journal Name:
Sensors
Volume:
22
Issue:
3
Page Range or eLocation-ID:
1224
ISSN:
1424-8220
Sponsoring Org:
National Science Foundation
More Like this
  1. Analysis of time-evolving data is crucial to understand the functioning of dynamic systems such as the brain. For instance, analysis of functional magnetic resonance imaging (fMRI) data collected during a task may reveal spatial regions of interest, and how they evolve during the task. However, capturing underlying spatial patterns as well as their change in time is challenging. The traditional approach in fMRI data analysis is to assume that underlying spatial regions of interest are static. In this article, using fractional amplitude of low-frequency fluctuations (fALFF) as an effective way to summarize the variability in fMRI data collected during a task, we arrange time-evolving fMRI data as a subjects by voxels by time windows tensor, and analyze the tensor using a tensor factorization-based approach called a PARAFAC2 model to reveal spatial dynamics. The PARAFAC2 model jointly analyzes data from multiple time windows revealing subject-mode patterns, evolving spatial regions (also referred to as networks) and temporal patterns. We compare the PARAFAC2 model with matrix factorization-based approaches relying on independent components, namely, joint independent component analysis (ICA) and independent vector analysis (IVA), commonly used in neuroimaging data analysis. We assess the performance of the methods in terms of capturing evolving networks throughmore »extensive numerical experiments demonstrating their modeling assumptions. In particular, we show that (i) PARAFAC2 provides a compact representation in all modes, i.e., subjects, time , and voxels , revealing temporal patterns as well as evolving spatial networks, (ii) joint ICA is as effective as PARAFAC2 in terms of revealing evolving networks but does not reveal temporal patterns, (iii) IVA's performance depends on sample size, data distribution and covariance structure of underlying networks. When these assumptions are satisfied, IVA is as accurate as the other methods, (iv) when subject-mode patterns differ from one time window to another, IVA is the most accurate. Furthermore, we analyze real fMRI data collected during a sensory motor task, and demonstrate that a component indicating statistically significant group difference between patients with schizophrenia and healthy controls is captured, which includes primary and secondary motor regions, cerebellum, and temporal lobe, revealing a meaningful spatial map and its temporal change.« less
  2. In a number of applications, one has access to high-dimensional time series data on several related subjects. A motivating application area comes from the neuroimaging field, such as brain fMRI time series data, obtained from various groups of subjects (cases/controls) with a specific neurological disorder. The problem of regularized joint estimation of multiple related Vector Autoregressive (VAR) models is discussed, leveraging a group lasso penalty in addition to a regular lasso one, so as to increase statistical efficiency of the estimates by borrowing strength across the models. A modeling framework is developed that it allows for both group-level and subject-specific effects for related subjects, using a group lasso penalty to estimate the former. An estimation procedure is introduced, whose performance is illustrated on synthetic data and compared to other state-of-the-art methods. Moreover, the proposed approach is employed for the analysis of resting state fMRI data. In particular, a group-level descriptive analysis is conducted for brain inter-regional temporal effects of Attention Deficit Hyperactive Disorder (ADHD) patients as opposed to controls, with the data available from the ADHD-200 Global Competition repository.
  3. Abstract

    We combined magnetoencephalography (MEG), 7 T proton magnetic resonance spectroscopy (MRS), and 7 T fMRI during performance of a task in a group of 23 first episode psychosis (FEP) patients and 26 matched healthy controls (HC). We recorded both the auditory evoked response to 40 Hz tone clicks and the resting state in MEG. Neurometabolite levels were obtained from the anterior cingulate cortex (ACC). The fMRI BOLD response was obtained during the Stroop inhibitory control task. FEP showed a significant increase in resting state low frequency theta activity (p < 0.05; Cohend= 0.69), but no significant difference in the 40 Hz auditory evoked response compared to HC. An across-groups whole brain analysis of the fMRI BOLD response identified eight regions that were significantly activated during task performance (p < 0.01, FDR-corrected); the mean signal extracted from those regions was significantly different between the groups (p = 0.0006;d = 1.19). In the combined FEP and HC group, there was a significant correlation between the BOLD signal during task performance and MEG resting state low frequency activity (p < 0.05). In FEP, we report significant alteration in resting state low frequency MEG activity, but no alterations in auditory evoked gamma band response, suggesting that the former is a more robust biomarker of early psychosis. There weremore »no correlations between gamma oscillations and GABA levels in either HC or FEP. Finally, in this study, each of the three imaging modalities differentiated FEP from HC; fMRI with good and MEG and MRS with moderate effect size.

    « less
  4. Abstract Background

    In Alzheimer’s Diseases (AD) research, multimodal imaging analysis can unveil complementary information from multiple imaging modalities and further our understanding of the disease. One application is to discover disease subtypes using unsupervised clustering. However, existing clustering methods are often applied to input features directly, and could suffer from the curse of dimensionality with high-dimensional multimodal data. The purpose of our study is to identify multimodal imaging-driven subtypes in Mild Cognitive Impairment (MCI) participants using a multiview learning framework based on Deep Generalized Canonical Correlation Analysis (DGCCA), to learn shared latent representation with low dimensions from 3 neuroimaging modalities.

    Results

    DGCCA applies non-linear transformation to input views using neural networks and is able to learn correlated embeddings with low dimensions that capture more variance than its linear counterpart, generalized CCA (GCCA). We designed experiments to compare DGCCA embeddings with single modality features and GCCA embeddings by generating 2 subtypes from each feature set using unsupervised clustering. In our validation studies, we found that amyloid PET imaging has the most discriminative features compared with structural MRI and FDG PET which DGCCA learns from but not GCCA. DGCCA subtypes show differential measures in 5 cognitive assessments, 6 brain volume measures, and conversion to AD patterns. Inmore »addition, DGCCA MCI subtypes confirmed AD genetic markers with strong signals that existing late MCI group did not identify.

    Conclusion

    Overall, DGCCA is able to learn effective low dimensional embeddings from multimodal data by learning non-linear projections. MCI subtypes generated from DGCCA embeddings are different from existing early and late MCI groups and show most similarity with those identified by amyloid PET features. In our validation studies, DGCCA subtypes show distinct patterns in cognitive measures, brain volumes, and are able to identify AD genetic markers. These findings indicate the promise of the imaging-driven subtypes and their power in revealing disease structures beyond early and late stage MCI.

    « less
  5. Background: Type 2 diabetes mellitus (T2DM) is known to be associated with neurobiological and cognitive deficits; however, their extent, overlap with aging effects, and the effectiveness of existing treatments in the context of the brain are currently unknown. Methods: We characterized neurocognitive effects independently associated with T2DM and age in a large cohort of human subjects from the UK Biobank with cross-sectional neuroimaging and cognitive data. We then proceeded to evaluate the extent of overlap between the effects related to T2DM and age by applying correlation measures to the separately characterized neurocognitive changes. Our findings were complemented by meta-analyses of published reports with cognitive or neuroimaging measures for T2DM and healthy controls (HCs). We also evaluated in a cohort of T2DM-diagnosed individuals using UK Biobank how disease chronicity and metformin treatment interact with the identified neurocognitive effects. Results: The UK Biobank dataset included cognitive and neuroimaging data (N = 20,314), including 1012 T2DM and 19,302 HCs, aged between 50 and 80 years. Duration of T2DM ranged from 0 to 31 years (mean 8.5 ± 6.1 years); 498 were treated with metformin alone, while 352 were unmedicated. Our meta-analysis evaluated 34 cognitive studies (N = 22,231) and 60 neuroimaging studies: 30more »of T2DM (N = 866) and 30 of aging (N = 1088). Compared to age, sex, education, and hypertension-matched HC, T2DM was associated with marked cognitive deficits, particularly in executive functioning and processing speed . Likewise, we found that the diagnosis of T2DM was significantly associated with gray matter atrophy, primarily within the ventral striatum , cerebellum , and putamen , with reorganization of brain activity (decreased in the caudate and premotor cortex and increased in the subgenual area , orbitofrontal cortex, brainstem, and posterior cingulate cortex ). The structural and functional changes associated with T2DM show marked overlap with the effects correlating with age but appear earlier, with disease duration linked to more severe neurodegeneration. Metformin treatment status was not associated with improved neurocognitive outcomes. Conclusions: The neurocognitive impact of T2DM suggests marked acceleration of normal brain aging. T2DM gray matter atrophy occurred approximately 26% ± 14% faster than seen with normal aging; disease duration was associated with increased neurodegeneration. Mechanistically, our results suggest a neurometabolic component to brain aging. Clinically, neuroimaging-based biomarkers may provide a valuable adjunctive measure of T2DM progression and treatment efficacy based on neurological effects. Funding: The research described in this article was funded by the W. M. Keck Foundation (to LRMP), the White House Brain Research Through Advancing Innovative Technologies (BRAIN) Initiative (NSFNCS-FR 1926781 to LRMP), and the Baszucki Brain Research Fund (to LRMP). None of the funding sources played any role in the design of the experiments, data collection, analysis, interpretation of the results, the decision to publish, or any aspect relevant to the study. DJW reports serving on data monitoring committees for Novo Nordisk. None of the authors received funding or in-kind support from pharmaceutical and/or other companies to write this article.« less