skip to main content


Title: BrainForge : An online data analysis platform for integrative neuroimaging acquisition, analysis, and sharing
Award ID(s):
2112455
NSF-PAR ID:
10331817
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Concurrency and Computation: Practice and Experience
ISSN:
1532-0626
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Plant smallRNAs (sRNAs) modulate key physiological mechanisms through post‐transcriptional and transcriptional silencing of gene expression. SmallRNAs fall into two major categories: those are reliant onRNA‐dependentRNApolymerases (RDRs) for biogenesis and those that are not. KnownRDR1/2/6‐dependentsRNAs include phased and repeat‐associated short interferingRNAs, while knownRDR1/2/6‐independentsRNAs are primarily microRNAs (miRNA) and other hairpin‐derivedsRNAs. In this study we produced and analyzedsRNA‐seq libraries fromrdr1/rdr2/rdr6triple mutant plants. We found 58 previously annotated miRNAloci that were reliant onRDR1, ‐2, or ‐6function, casting doubt on their classification. We also found 38RDR1/2/6‐independentsRNAloci that are notMIRNAs or otherwise hairpin‐derived, and did not fit into other known paradigms forsRNAbiogenesis. These 38sRNA‐producing loci have as‐yet‐undescribed biogenesis mechanisms, and are frequently located in the vicinity of protein‐coding genes. Altogether, our analysis suggests that these 38 loci represent one or more undescribed types ofsRNAinArabidopsis thaliana.

     
    more » « less
  2. Abstract Objectives

    The COVID‐19 pandemic in South Africa introduced new societal adversities and mental health threats in a country where one in three individuals are expected to develop a psychiatric condition sometime in their life. Scientists have suggested that psychosocial stress and trauma during childhood may increase one's vulnerability to the mental health consequences of future stressors—a process known as stress sensitization. This prospective analysis assessed whether childhood adversity experienced among South African children across the first 18 years of life, coinciding with the post‐apartheid transition, exacerbates the mental health impacts of psychosocial stress experienced during the 2019 coronavirus (COVID‐19) pandemic (ca. 2020–2021).

    Materials and Methods

    Data came from 88 adults who participated in a follow‐up study of a longitudinal birth cohort study in Soweto, South Africa. Childhood adversity and COVID‐19 psychosocial stress were assessed as primary predictors of adult PTSD risk, and an interaction term between childhood adversity and COVID‐19 stress was calculated to evaluate the potential effect of stress sensitization.

    Results

    Fifty‐six percent of adults exhibited moderate‐to‐severe PTSD symptoms. Greater childhood adversity and higher COVID‐19 psychosocial stress independently predicted worse post‐traumatic stress disorder symptoms in adults. Adults who reported greater childhood adversity exhibited non‐significantly worse PTSD symptoms from COVID‐19 psychosocial stress.

    Discussion

    These results highlight the deleterious mental health effects of both childhood trauma and COVID‐19 psychosocial stress in our sample and emphasize the need for greater and more accessible mental health support as the pandemic progresses in South Africa.

     
    more » « less
  3. Abstract

    Multiple previous studies using several different probes have shown considerable evidence for the existence of cosmological‐scale anisotropy and a Hubble‐scale axis. One of the probes that show such evidence is the distribution of the directions toward which galaxies spin. The advantage of the analysis of the distribution of galaxy spin directions compared to the cosmic microwave background anisotropy is that the ratio of galaxy spin directions is a relative measurement, and therefore less sensitive to background contamination such as Milky Way obstruction. Another advantage is that many spiral galaxies have spectra, and therefore allow to analyze the location of such axis relative to Earth. This paper shows an analysis of the distribution of the spin directions of over 90K galaxies with spectra. That analysis is also compared to previous analyses using the Earth‐based Sloan Digital Sky Survey, Panoramic Survey Telescope and Rapid Response System, and Dark Energy Spectroscopic Instrument Legacy Survey, as well as space‐based data collected by Hubble Space Telescope. The results show very good agreement between the distribution patterns observed with the different telescopes. The dipole or quadrupole axes formed by the spin directions of the galaxies with spectra do not necessarily go directly through Earth.

     
    more » « less
  4. Summary

    Photosynthetic organisms rapidly adjust the capture, transfer and utilization of light energy to optimize the efficiency of photosynthesis and avoid photodamage. These adjustments involve fine‐tuning of expression levels and mutual interactions among electron/proton transfer components and their associated light‐harvesting antenna. Detailed studies of these interactions and their dynamics have been hindered by the low throughput and resolution of currently available research tools, which involve laborious isolation, separation and characterization steps. To address these issues, we developed an approach that measured multiple spectroscopic properties of thylakoid preparations directly in native polyacrylamide gel electrophoresis gels, enabling unprecedented resolution of photosynthetic complexes, both in terms of the spectroscopic and functional details, as well as the ability to distinguish separate complexes and thus test their functional connections. As a demonstration, we explore the thylakoid membrane components ofChlamydomonas reinhardtiiacclimated to high and low light, using a combination of room temperature absorption and 77K fluorescence emission to generate a multi‐dimensional molecular and spectroscopic map of the photosynthetic apparatus. We show that low‐light‐acclimated cells accumulate a photosystem I‐containing megacomplex that is absent in high‐light‐acclimated cells and contains distinct LhcIIproteins that can be distinguished based on their spectral signatures.

     
    more » « less
  5. Summary

    Universal primers for SSU rRNA genes allow profiling of natural communities by simultaneously amplifying templates from Bacteria, Archaea, and Eukaryota in a single PCR reaction. Despite the potential to show relative abundance for all rRNA genes, universal primers are rarely used, due to various concerns including amplicon length variation and its effect on bioinformatic pipelines. We thus developed 16S and 18S rRNA mock communities and a bioinformatic pipeline to validate this approach. Using these mocks, we show that universal primers (515Y/926R) outperformed eukaryote‐specific V4 primers in observed versus expected abundance correlations (slope = 0.88 vs. 0.67–0.79), and mock community members with single mismatches to the primer were strongly underestimated (threefold to eightfold). Using field samples, both primers yielded similar 18S beta‐diversity patterns (Mantel test,p < 0.001) but differences in relative proportions of many rarer taxa. To test for length biases, we mixed mock communities (16S + 18S) before PCR and found a twofold underestimation of 18S sequences due to sequencing bias. Correcting for the twofold underestimation, we estimate that, in Southern California field samples (1.2–80 μm), there were averages of 35% 18S, 28% chloroplast 16S, and 37% prokaryote 16S rRNA genes. These data demonstrate the potential for universal primers to generate comprehensive microbiome profiles.

     
    more » « less