skip to main content

Title: Temperature dependent local structure coherence of surface-modified BaTiO 3 nanocubes
Surface functionalized barium titanate (BaTiO 3 ) nanocrystals have been explored for highly tunable chemical and electronic properties, potentially of use in ceramic-polymer composites for flexible ferroelectric device applications, directed synthesis of ferroelectric thin films or other nano-architectures, and other potential applications. The detailed temperature dependent local structure evolution of BaTiO 3 nanocubes capped with nonpolar oleic acid (OA) and polar tetrafluoroborate (BF 4 − ) ligands are investigated using in situ synchrotron X-ray diffraction and pair distribution function (PDF) analysis, in conjunction with piezoresponse force microscopy (PFM) and 137 Ba nuclear magnetic resonance (NMR) spectroscopy measurements. Diffraction analysis reveals that nanocubes capped by polar BF 4 − ligands undergo sharper ferroelectric to paraelectric phase transitions than nanocubes capped with nonpolar OA ligands, with the smallest ∼12 nm nanocubes displaying no transition. Local non-centrosymmetric symmetry is observed by PDF analysis and confirmed by NMR, persisting across the phase transition temperature. Local distortion analysis, manifested in tetragonality ( c / a ) and Ti off-centering ( z Ti ) parameters, reveals distinct temperature and length-scale dependencies with particle size and capping group. Ferroelectric order is increased by polar BF 4 − ligands, which is corroborated by an enhancement of PFM response.
; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of Materials Chemistry C
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ferroelectricity is typically suppressed under hydrostatic compression because the short-range repulsions, which favor the nonpolar phase, increase more rapidly than the long-range interactions, which prefer the ferroelectric phase. Here, based on single-crystal X-ray diffraction and density-functional theory, we provide evidence of a ferroelectric-like transition from phaseI213 toR3 induced by pressure in two isostructural defect antiperovskites Hg3Te2Cl2(15.5 GPa) and Hg3Te2Br2(17.5 GPa). First-principles calculations show that this transition is attributed to pressure-induced softening of the infrared phonon mode Γ4, similar to the archetypal ferroelectric material BaTiO3at ambient pressure. Additionally, we observe a gradual band-gap closing from ~2.5 eV to metallic-like state of Hg3Te2Br2with an unexpectedly stableR3 phase even after semiconductor-to-metal transition. This study demonstrates the possibility of emergence of polar metal under pressure in this class of materials and establishes the possibility of pressure-induced ferroelectric-like transition in perovskite-related systems.

  2. The current trend in the miniaturization of electronic devices has driven the investigation into many nanostructured materials. The ferroelectric material barium titanate (BaTiO 3 ) has garnered considerable attention over the past decade owing to its excellent dielectric and ferroelectric properties. This has led to significant progress in synthetic techniques that yield high quality BaTiO 3 nanocrystals (NCs) with well-defined morphologies ( e.g. , nanoparticles, nanorods, nanocubes and nanowires) and controlled crystal phases ( e.g. , cubic, tetragonal and multi-phase). The ability to produce nanoscale BaTiO 3 with controlled properties enables theoretical and experimental studies on the intriguing yet complex dielectric properties of individual BaTiO 3 NCs as well as BaTiO 3 /polymer nanocomposites. Compared with polymer-free individual BaTiO 3 NCs, BaTiO 3 /polymer nanocomposites possess several advantages. The polymeric component enables simple solution processibility, high breakdown strength and light weight for device scalability. The BaTiO 3 component enables a high dielectric constant. In this review, we highlight recent advances in the synthesis of high-quality BaTiO 3 NCs via a variety of chemical approaches including organometallic, solvothermal/hydrothermal, templating, molten salt, and sol–gel methods. We also summarize the dielectric and ferroelectric properties of individual BaTiO 3 NCs and devices based onmore »BaTiO 3 NCs via theoretical modeling and experimental piezoresponse force microscopy (PFM) studies. In addition, viable synthetic strategies for novel BaTiO 3 /polymer nanocomposites and their structure–composition–performance relationship are discussed. Lastly, a perspective on the future direction of nanostructured BaTiO 3 -based materials is presented.« less
  3. Hard X-ray nanodiffraction provides a unique nondestructive technique to quantify local strain and structural inhomogeneities at nanometer length scales. However, sample mosaicity and phase separation can result in a complex diffraction pattern that can make it challenging to quantify nanoscale structural distortions. In this work, a k -means clustering algorithm was utilized to identify local maxima of intensity by partitioning diffraction data in a three-dimensional feature space of detector coordinates and intensity. This technique has been applied to X-ray nanodiffraction measurements of a patterned ferroelectric PbZr 0.2 Ti 0.8 O 3 sample. The analysis reveals the presence of two phases in the sample with different lattice parameters. A highly heterogeneous distribution of lattice parameters with a variation of 0.02 Å was also observed within one ferroelectric domain. This approach provides a nanoscale survey of subtle structural distortions as well as phase separation in ferroelectric domains in a patterned sample.
  4. Abstract

    The layered perovskite Ca3Mn2O7(CMO) is a hybrid improper ferroelectric candidate proposed for room temperature multiferroicity, which also displays negative thermal expansion behavior due to a competition between coexisting polar and nonpolar phases. However, little is known about the atomic-scale structure of the polar/nonpolar phase coexistence or the underlying physics of its formation and transition. In this work, we report the direct observation of double bilayer polar nanoregions (db-PNRs) in Ca2.9Sr0.1Mn2O7using aberration-corrected scanning transmission electron microscopy (S/TEM). In-situ TEM heating experiments show that the db-PNRs can exist up to 650 °C. Electron energy loss spectroscopy (EELS) studies coupled with first-principles calculations demonstrate that the stabilization mechanism of the db-PNRs is directly related to an Mn oxidation state change (from 4+ to 2+), which is linked to the presence of Mn antisite defects. These findings open the door to manipulating phase coexistence and achieving exotic properties in hybrid improper ferroelectric.

  5. Controlling the growth of complex relaxor ferroelectric thin films and understanding the relationship between biaxial strain–structural domain characteristics are desirable for designing materials with a high electromechanical response. For this purpose, epitaxial thin films free of extended defects and secondary phases are urgently needed. Here, we used optimized growth parameters and target compositions to obtain epitaxial (40–45 nm) 0.67Pb(Mg 1/3 Nb 2/3 )O 3 –0.33PbTiO 3 /(20 nm) SrRuO 3 (PMN–33PT/SRO) heterostructures using pulsed-laser deposition (PLD) on singly terminated SrTiO 3 (STO) and ReScO 3 (RSO) substrates with Re = Dy, Tb, Gd, Sm, and Nd. In situ reflection high-energy electron diffraction (RHEED) and high-resolution X-ray diffraction (HR-XRD) analysis confirmed high-quality and single-phase thin films with smooth 2D surfaces. High-resolution scanning transmission electron microscopy (HR-STEM) revealed sharp interfaces and homogeneous strain further confirming the epitaxial cube-on-cube growth mode of the PMN–33PT/SRO heterostructures. The combined XRD reciprocal space maps (RSMs) and piezoresponse force microscopy (PFM) analysis revealed that the domain structure of the PMN–33PT heterostructures is sensitive to the applied compressive strain. From the RSM patterns, an evolution from a butterfly-shaped diffraction pattern for mildly strained PMN–33PT layers, which is evidence of stabilization of relaxor domains, to disc-shaped diffraction patterns formore »high compressive strains with a highly distorted tetragonal structure, is observed. The PFM amplitude and phase of the PMN–33PT thin films confirmed the relaxor-like for a strain state below ∼1.13%, while for higher compressive strain (∼1.9%) the irregularly shaped and poled ferroelectric domains were observed. Interestingly, the PFM phase hysteresis loops of the PMN–33PT heterostructures grown on the SSO substrates (strain state of ∼0.8%) exhibited an enhanced coercive field which is about two times larger than that of the thin films grown on GSO and NSO substrates. The obtained results show that epitaxial strain engineering could serve as an effective approach for tailoring and enhancing the functional properties in relaxor ferroelectrics.« less