Abstract Knowledge about phase transitions in doped HfO2and ZrO2‐based films is crucial for developing future ferroelectric devices. These devices should perform in ambient temperature ranges with no degradation of device performance. Here, the phase transition from the polar orthorhombic to the nonpolar tetragonal phase in thin films is of significant interest. Detailed electrical and structural characterization is performed on 10 nm mixed HfxZr1‐xO2binary oxides with different ZrO2in HfO2and small changes in oxygen content. Both dopant and oxygen content directly impact the phase transition temperature between the polar and nonpolar phase. A first‐order phase transition with thermal hysteresis is observed from the nonpolar to the polar phase with a maximum in the dielectric constant. The observed phase transition temperatures confirm trends as obtained by DFT calculations. Based on the outcome of the measurements, the classification of the ferroelectric material is discussed.
more »
« less
Double-Bilayer polar nanoregions and Mn antisites in (Ca, Sr)3Mn2O7
Abstract The layered perovskite Ca3Mn2O7(CMO) is a hybrid improper ferroelectric candidate proposed for room temperature multiferroicity, which also displays negative thermal expansion behavior due to a competition between coexisting polar and nonpolar phases. However, little is known about the atomic-scale structure of the polar/nonpolar phase coexistence or the underlying physics of its formation and transition. In this work, we report the direct observation of double bilayer polar nanoregions (db-PNRs) in Ca2.9Sr0.1Mn2O7using aberration-corrected scanning transmission electron microscopy (S/TEM). In-situ TEM heating experiments show that the db-PNRs can exist up to 650 °C. Electron energy loss spectroscopy (EELS) studies coupled with first-principles calculations demonstrate that the stabilization mechanism of the db-PNRs is directly related to an Mn oxidation state change (from 4+ to 2+), which is linked to the presence of Mn antisite defects. These findings open the door to manipulating phase coexistence and achieving exotic properties in hybrid improper ferroelectric.
more »
« less
- PAR ID:
- 10370295
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Integration of ferroelectric materials into novel technological applications requires low coercive field materials, and consequently, design strategies to reduce the ferroelectric switching barriers. In this first principles study, we show that biaxial strain, which has a strong effect on the ferroelectric ground states, can also be used to tune the switching barrier of hybrid improper ferroelectric Ruddlesden–Popper oxides. We identify the region of the strain-tolerance factor phase diagram where this intrinsic barrier is suppressed, and show that it can be explained in relation to strain-induced phase transitions to nonpolar phases.more » « less
-
Solid state compounds which exhibit non-centrosymmetric crystal structures are of great interest due to the physical properties they can exhibit. The ‘hybrid improper’ mechanism – in which two non-polar distortion modes couple to, and stabilize, a further polar distortion mode, yielding an acentric crystal structure – offers opportunities to prepare a range of novel non-centrosymmetric solids, but examples of compounds exhibiting acentric crystal structures stabilized by this mechanism are still relatively rare. Here we describe a series of bismuth-containing layered perovskite oxide phases, RbBiNb 2 O 7 , LiBiNb 2 O 7 and NaBiNb 2 O 7 , which have structural frameworks compatible with hybrid-improper ferroelectricity, but also contain Bi 3+ cations which are often observed to stabilize acentric crystal structures due to their 6s 2 electronic configurations. Neutron powder diffraction analysis reveals that RbBiNb 2 O 7 and LiBiNb 2 O 7 adopt polar crystal structures (space groups I 2 cm and B 2 cm respectively), compatible with stabilization by a trilinear coupling of non-polar and polar modes. The Bi 3+ cations present are observed to enhance the magnitude of the polar distortions of these phases, but are not the primary driver for the acentric structure, as evidenced by the observation that replacing the Bi 3+ cations with Nd 3+ cations does not change the structural symmetry of the compounds. In contrast the non-centrosymmetric, but non-polar structure of NaBiNb 2 O 7 (space group P 2 1 2 1 2 1 ) differs significantly from the centrosymmetric structure of NaNdNb 2 O 7 , which is attributed to a second-order Jahn-Teller distortion associated with the presence of the Bi 3+ cations.more » « less
-
Abstract Garnet‐type Li7La3Zr2O12(LLZO) solid‐state electrolytes hold great promise for the next‐generation all‐solid‐state batteries. An in‐depth understanding of the phase transformation during synthetic processes is required for better control of the crystallinity and improvement of the ionic conductivity of LLZO. Herein, the phase transformation pathways and the associated surface amorphization are comparatively investigated during the sol–gel and solid‐state syntheses of LLZO using in situ heating transmission electron microscopy (TEM). The combined ex situ X‐ray diffraction and in situ TEM techniques are used to reveal two distinct phase transformation pathways (precursors → La2Zr2O7 → LLZO and precursors → LLZO) and the subsequent layer‐by‐layer crystal growth of LLZO on the atomic scale. It is also demonstrated that the surface amorphization surrounding the LLZO crystals is sensitive to the postsynthesis cooling rate and significantly affects the ionic conductivity of pelletized LLZO. This work brings up a critical but often overlooked issue that may greatly exacerbate the Li‐ion conductivity by undesired synthetic conditions, which can be leveraged to ameliorate the overall crystallinity to improve the electrochemical performance of LLZO. These findings also shed light on the significance of optimizing surface structure to ensure superior performance of Li‐ion conductors.more » « less
-
Advances in creating polar structures in atomic‐layered hafnia‐zirconia (HfxZr1−xO2) films not only augurs extensive growth in studying ferroelectric nanoelectronics and neuromorphic devices, but also spurs opportunities for exploring novel integrated nanoelectromechanical systems (NEMS). Design and implementation of HfxZr1−xO2NEMS transducers necessitates accurate knowledge of elastic and electromechanical properties. Up to now, all experimental approaches for extraction of morphological content, elastic, and electromechanical properties of HfxZr1−xO2are based on solidly mounted structures, highly stressed films, and electroded architectures. Unlike HfxZr1−xO2layers embedded in electronics, NEMS transducers require free‐standing structures with highly contrasted mechanical boundaries and stress profiles. Here, a nanoresonator‐based approach for simultaneous extraction of Young's modulus and residual stress in free‐standing ferroelectric Hf0.5Zr0.5O2films is presented. High quality factor resonance modes of nanomechanical resonators created in predominantly orthorhombic Hf0.5Zr0.5O2films are measured using nondestructive optical transduction. Further, the evolution of morphology during creation of free‐standing Hf0.5Zr0.5O2structures is closely mapped using X‐ray diffraction measurements, clearly showing transformation of ferroelectric orthorhombic to nonpolar monoclinic phase upon stress relaxation. The extracted Young's modulus of 320.0 ± 29.4 GPa and residual stress ofσ = 577.4 ± 24.1 MPa show the closest match with theoretical calculations for orthorhombic Hf0.5Zr0.5O2.more » « less
An official website of the United States government
