skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A single locus regulates a female-limited color pattern polymorphism in a reptile
A simple genetic switch controls a color pattern polymorphism, and in silico modeling supports a role for cell migration.  more » « less
Award ID(s):
1927194 1827647 1927156
PAR ID:
10331922
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
8
Issue:
10
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider a (very) simple version of the restricted three body problem in general relativity. The background geometry is given by a Schwarzschild solution governing the motion of two bodies of masses $$m_1$$ and $$m_2$$. We assume that corrections to the trajectory of the body of mass $$m_1$$ due to the presence of the mass $$m_2$$ are given by a Newtonian approximation where Poisson's equation is solved with respect to the Schwarzschild background geometry. Under these assumptions, we derive approximate equations of motion for the corrections to the trajectory of the body of mass $$m_1$$. 
    more » « less
  2. Abstract The manipulation of 3D objects is becoming crucial for many applications, such as health, industry, or entertainment, to mention some. However, these 3D objects require substantial energy and different types of resources. With the goal of obtaining a simplified representation of a 3D object that can be easily managed, for example, for transmission, in some recent works, the authors associate low-density point clouds with a 3D object that simplifies the original 3D object. More precisely, given a 3D object in a polyhedral format, some authors associate a chain code and then use grammar-free context to obtain key points that give rise to several point clouds with different densities. In this work, we complete the cycle by developing a polyhedral reconstruction from an associated low-density point cloud and the chain code. The polyhedral reconstruction is crucial for handling 3D objects because it allows us to visualize them after they are efficiently compressed and transmitted. We apply our algorithms to well-known 3D objects in the literature. We use the Hausdorff and Chamfer distances to compare our results with the state-of-the-art proposals. We show how our proposed polyhedral reconstruction based on a helical chain code reconstructs a medical image represented or transmitted by slices into a 3D object in a polyhedral format, helping thus to mitigate and alleviate the management of 3D medical objects. The polyhedron that we propose provides better compression when compared with the original set of slices of a 3D medical object. 
    more » « less
  3. Abstract When a piece of fruit is in a bowl, and the bowl is on a table, we appreciate not only the individual objects and their features, but also the relations containment and support, which abstract away from the particular objects involved. Independent representation of roles (e.g., containers vs. supporters) and “fillers” of those roles (e.g., bowls vs. cups, tables vs. chairs) is a core principle of language and higher-level reasoning. But does such role-filler independence also arise in automatic visual processing? Here, we show that it does, by exploring a surprising error that such independence can produce. In four experiments, participants saw a stream of images containing different objects arranged in force-dynamic relations—e.g., a phone contained in a basket, a marker resting on a garbage can, or a knife sitting in a cup. Participants had to respond to a single target image (e.g., a phone in a basket) within a stream of distractors presented under time constraints. Surprisingly, even though participants completed this task quickly and accurately, they false-alarmed more often to images matching the target’s relational category than to those that did not—even when those images involved completely different objects. In other words, participants searching for a phone in a basket were more likely to mistakenly respond to a knife in a cup than to a marker on a garbage can. Follow-up experiments ruled out strategic responses and also controlled for various confounding image features. We suggest that visual processing represents relations abstractly, in ways that separate roles from fillers. 
    more » « less
  4. Abstract We study both the practical and theoretical efficiency of private information retrieval (PIR) protocols in a model wherein several untrusted servers work to obliviously service remote clients’ requests for data and yet no pair of servers colludes in a bid to violate said obliviousness. In exchange for such a strong security assumption, we obtain new PIR protocols exhibiting remarkable efficiency with respect to every cost metric—download, upload, computation, and round complexity—typically considered in the PIR literature. The new constructions extend a multiserver PIR protocol of Shah, Rashmi, and Ramchandran (ISIT 2014), which exhibits a remarkable property of its own: to fetch a b -bit record from a collection of r such records, the client need only download b + 1 bits total. We find that allowing “a bit more” download (and optionally introducing computational assumptions) yields a family of protocols offering very attractive trade-offs. In addition to Shah et al.’s protocol, this family includes as special cases (2-server instances of) the seminal protocol of Chor, Goldreich, Kushilevitz, and Sudan (FOCS 1995) and the recent DPF-based protocol of Boyle, Gilboa, and Ishai (CCS 2016). An implicit “folklore” axiom that dogmatically permeates the research literature on multiserver PIR posits that the latter protocols are the “most efficient” protocols possible in the perfectly and computationally private settings, respectively. Yet our findings soundly refute this supposed axiom: These special cases are (by far) the least performant representatives of our family, with essentially all other parameter settings yielding instances that are significantly faster. 
    more » « less
  5. Astronomers have found more than a dozen planets transiting stars that are 10–40 million years old1, but younger transiting planets have remained elusive. The lack of such discoveries may be because planets have not fully formed at this age or because our view is blocked by the protoplanetary disk. However, we now know that many outer disks are warped or broken2; provided the inner disk is depleted, transiting planets may thus be visible. Here we report observations of the transiting planet IRAS 04125+2902 b orbiting a 3-million-year-old, 0.7-solar-mass, pre-main-sequence star in the Taurus Molecular Cloud. The host star harbours a nearly face-on (30 degrees inclination) transitional disk3 and a wide binary companion. The planet has a period of 8.83 days, a radius of 10.7 Earth radii (0.96 Jupiter radii) and a 95%-confidence upper limit on its mass of 90 Earth masses (0.3 Jupiter masses) from radial-velocity measurements, making it a possible precursor of the super-Earths and sub-Neptunes frequently found around main-sequence stars. The rotational broadening of the star and the orbit of the wide (4 arcseconds, 635 astronomical units) companion are both consistent with edge-on orientations. Thus, all components of the system are consistent with alignment except the outer disk; the origin of this misalignment is unclear. 
    more » « less