skip to main content


Title: Detrimental or beneficial? Untangling the literature on developmental stress studies in birds
ABSTRACT Developing animals display a tremendous ability to change the course of their developmental path in response to the environment they experience, a concept referred to as developmental plasticity. This change in behavior, physiology or cellular processes is primarily thought to allow animals to better accommodate themselves to the surrounding environment. However, existing data on developmental stress and whether it brings about beneficial or detrimental outcomes show conflicting results. There are several well-referred hypotheses related to developmental stress in the current literature, such as the environmental matching, silver spoon and thrifty phenotype hypotheses. These hypotheses speculate that the early-life environment defines the capacity of the physiological functions and behavioral tendencies and that this change is permanent and impacts the fitness of the individual. These hypotheses also postulate there is a trade-off among organ systems and physiological functions when resources are insufficient. Published data on avian taxa show that some effects of developmental nutritional and thermal stressors are long lasting, such as the effects on body mass and birdsong. Although hypotheses on developmental stress are based on fitness components, data on reproduction and survival are scarce, making it difficult to determine which hypothesis these data support. Furthermore, most physiological and performance measures are collected only once; thus, the physiological mechanisms remain undertested. Here, we offer potential avenues of research to identify reasons behind the contrasting results in developmental stress research and possible ways to determine whether developmental programming due to stressors is beneficial or detrimental, including quantifying reproduction and survival in multiple environments, measuring temporal changes in physiological variables and testing for stress resistance later in life.  more » « less
Award ID(s):
2015802 1553657
NSF-PAR ID:
10331939
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Experimental Biology
Volume:
224
Issue:
19
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Developmental stressors can have strong effects that persist well into adulthood, and are generally seen as detrimental. However, recent work suggests that a mild developmental stressor can have beneficial effects by preparing the organism to better withstand negative impacts when exposed to high levels of the stressor later in life, also known as a conditioning hormesis. Still, little is known about the influence of such hormetic effects on fitness‐related measures. We hypothesized that exposure to a mild stressor during development will protect individuals later in life from the negative effects of a high heat stressor on immune function and reproduction. To test this hypothesis, we subjected zebra finches (Taeniopygia guttata) to a repeated mild heat stressor (38°C) as juveniles for 28 days. As adults, the birds were then exposed to a high heat stressor (42°C) for 3 consecutive days and we examined the effects on immune function via wound healing, and on female reproductive output. We found that females given the mild heat stressor as juveniles healed wounds marginally slower, but also had higher clutch viability than controls. For the adult treatment, we saw that high heat had a stimulatory effect on clutch viability as well. Our findings point toward the occurrence of trade‐offs between immune function and reproduction due to a cost of hormetic priming when the adult environment does not match that of early life.

     
    more » « less
  2. Abstract Development can play a critical role in how organisms respond to changes in the environment. Tolerance to environmental challenges can vary during ontogeny, with individual- and population-level impacts that are associated with the timing of exposure relative to the timing of vulnerability. In addition, the life history consequences of different stressors can vary with the timing of exposure to stress. Salinization of freshwater ecosystems is an emerging environmental concern, and habitat salinity can change rapidly due, for example, to storm surge, runoff of road deicing salts, and rainfall. Elevated salinity can increase the demands of osmoregulation in freshwater organisms, and amphibians are particularly at risk due to their permeable skin and, in many species, semi-aquatic life cycle. In three experiments, we manipulated timing and duration of exposure to elevated salinity during larval development of southern toad (Anaxyrus terrestris) tadpoles and examined effects on survival, larval growth, and timing of and size at metamorphosis. Survival was reduced only for tadpoles exposed to elevated salinity early in development, suggesting an increase in tolerance as development proceeds; however, we found no evidence of acclimation to elevated salinity. Two forms of developmental plasticity may help to ameliorate costs of transient salinity exposure. With early salinity exposure, the return to freshwater was accompanied by a period of rapid compensatory growth, and metamorphosis ultimately occurred at a similar age and size as freshwater controls. By contrast, salinity exposure later in development led to earlier metamorphosis at reduced size, indicating an acceleration of metamorphosis as a mechanism to escape salinity stress. Thus, the consequences of transient salinity exposure were complex and were mediated by developmental state. Salinity stress experienced early in development resulted in acute costs but little long-lasting effect on survivors, while exposures later in development resulted in sublethal effects that could influence success in subsequent life stages. Overall, our results suggest that elevated salinity is more likely to affect southern toad larvae when experienced early during larval development, but even brief sublethal exposure later in development can alter life history in ways that may impact fitness. 
    more » « less
  3. ABSTRACT Oxidative damage is predicted to be a mediator of trade-offs between current reproduction and future reproduction or survival, but most studies fail to support such predictions. We suggest that two factors underlie the equivocal nature of these findings: (1) investigators typically assume a negative linear relationship between current reproduction and future reproduction or survival, even though this is not consistently shown by empirical studies; and (2) studies often fail to target mechanisms that could link interactions between sequential life-history events. Here, we review common patterns of reproduction, focusing on the relationships between reproductive performance, survival and parity in females. Observations in a range of species show that performance between sequential reproductive events can decline, remain consistent or increase. We describe likely bioenergetic consequences of reproduction that could underlie these changes in fitness, including mechanisms that could be responsible for negative effects being ephemeral, persistent or delayed. Finally, we make recommendations for designing future studies. We encourage investigators to carefully consider additional or alternative measures of bioenergetic function in studies of life-history trade-offs. Such measures include reactive oxygen species production, oxidative repair, mitochondrial biogenesis, cell proliferation, mitochondrial DNA mutation and replication error and, importantly, a measure of the respiratory function to determine whether measured differences in bioenergetic state are associated with a change in the energetic capacity of tissues that could feasibly affect future reproduction or lifespan. More careful consideration of the life-history context and bioenergetic variables will improve our understanding of the mechanisms that underlie the life-history patterns of animals. 
    more » « less
  4. Abstract

    Organisms are increasingly likely to be exposed to multiple stressors repeatedly across ontogeny as climate change and other anthropogenic stressors intensify. Early life stages can be particularly sensitive to environmental stress, such that experiences early in life can “carry over” to have long‐term effects on organism fitness. Despite the potential importance of these within‐generation carryover effects, we have little understanding of how they vary across ecological contexts, particularly when organisms are re‐exposed to the same stressors later in life. In coastal marine systems, anthropogenic nutrients and warming water temperatures are reducing average dissolved oxygen (DO) concentrations while also increasing the severity of naturally occurring daily fluctuations in DO. Combined effects of warming and diel‐cycling DO can strongly affect the fitness and survival of coastal organisms, including the eastern oyster (Crassostrea virginica), a critical ecosystem engineer and fishery species. However, whether early life exposure to hypoxia and warming affects oysters' subsequent response to these stressors is unknown. Using a multiphase laboratory experiment, we explored how early life exposure to diel‐cycling hypoxia and warming affected oyster growth when oysters were exposed to these same stressors 8 weeks later. We found strong, interactive effects of early life exposure to diel‐cycling hypoxia and warming on oyster tissue : shell growth, and these effects were context‐dependent, only manifesting when oysters were exposed to these stressors again two months later. This change in energy allocation based on early life stress exposure may have important impacts on oyster fitness. Exposure to hypoxia and warming also influenced oyster tissue and shell growth, but only later in life. Our results show that organisms' responses to current stress can be strongly shaped by their previous stress exposure, and that context‐dependent carryover effects may influence the fitness, production, and restoration of species of management concern, particularly for sessile species such as oysters.

     
    more » « less
  5. Abstract

    Vertebrates respond to a diversity of stressors by rapidly elevating glucocorticoid (GC) levels. The changes in physiology and behavior triggered by this response can be crucial for surviving a variety of challenges. Yet the same process that is invaluable in coping with immediate threats can also impose substantial damage over time. In addition to the pathological effects of long-term exposure to stress hormones, even relatively brief elevations can impair the expression of a variety of behaviors and physiological processes central to fitness, including sexual behavior, parental behavior, and immune function. Therefore, the ability to rapidly and effectively terminate the short-term response to stress may be fundamental to surviving and reproducing in dynamic environments. Here we review the evidence that variation in the ability to terminate the stress response through negative feedback is an important component of stress coping capacity. We suggest that coping capacity may also be influenced by variation in the dynamic regulation of GCs—specifically, the ability to rapidly turn on and off the stress response. Most tests of the fitness effects of these traits to date have focused on organisms experiencing severe or prolonged stressors. Here we use data collected from a long-term study of tree swallows (Tachycineta bicolor) to test whether variation in negative feedback, or other measures of GC regulation, predict components of fitness in non-chronically stressed populations. We find relatively consistent, but generally weak relationships between different fitness components and the strength of negative feedback. Reproductive success was highest in individuals that both mounted a robust stress response and had strong negative feedback. We did not see consistent evidence of a relationship between negative feedback and adult or nestling survival: negative feedback was retained in the best supported models of nestling and adult survival, but in two of three survival-related analyses the intercept-only model received only slightly less support. Both negative feedback and stress-induced GC levels—but not baseline GCs—were individually repeatable. These measures of GC activity did not consistently covary across ages and life history stages, indicating that they are independently regulated. Overall, the patterns seen here are consistent with the predictions that negative feedback—and the dynamic regulation of GCs—are important components of stress coping capacity, but that the fitness benefits of having strong negative feedback during the reproductive period are likely to manifest primarily in individuals exposed to chronic or repeated stressors.

     
    more » « less