skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Getting to a good place with science instruction: Rethinking an appropriate conception of teaching science
This essay opens with a question about what science teaching would look like in a world where categorical seams of human diversity were not probabilistic determinants of science learning. After revisiting Hewson and Hewson's description of an “appropriate conception of science teaching,” I detail the ways in which the field of science education has advanced in the decades since that article's publication. Drawing upon Cohen's notion of teaching as an “impossible profession,” I highlight how conceptions of science teaching compete with other popular models of teaching and learning science. Fenstermacher and Richardson's distinction between successful teaching, and good teaching is then presented to demonstrate that even science teaching that is considered successful and good remains embedded in a constrained system where well-regarded classroom practices may still lead to accumulated negative consequences. The essay ends with a discussion of complexity and recursiveness in science teaching, an argument for science teaching that includes embedded understandings of that teaching and learning on the part of the students themselves, and suggestions for a revised conception of science teaching.  more » « less
Award ID(s):
2029956
PAR ID:
10332001
Author(s) / Creator(s):
Date Published:
Journal Name:
Science Education
Volume:
106
Issue:
5
ISSN:
0036-8326
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Educators, researchers, politicians, tech companies, and others continue to advocate for the importance of K-12 students learning computer science in our increasingly tech-driven society. One way school districts in the United States address this growing demand is by allowing teachers certified in other disciplines to lead computer science courses. Summer and weekend professional development opportunities support these educators in developing the expertise needed for effective computer science teaching, but a great portion of their learning to teach computer science will occur through on-the-job experiences. Our four-year NSF EHR grant explores how a job-embedded professional development program that pairs high school teachers with tech industry professionals supports educators in acquiring computer science teaching knowledge. The research presented in this poster focuses on the third year of the study and includes (a) a theoretical component focused on creating a framework to explain on-the-job computer science teaching knowledge development based on case studies with six teachers, and (b) an empirical component focused on the creation and administration of a computer science teaching knowledge assessment. By the time of the SIGCSE symposium, we expect to have pre-test results from the first administration of our teaching knowledge assessment, completed by both high school teachers and their collaborating tech industry professionals. This poster will present our theoretical framework, resultant teaching knowledge assessment with sample items, and analysis of participants' assessment responses and their relationship to specific teaching experiences. 
    more » « less
  2. Despite the intent to advance engineering education with NGSS, teachers across all grades lack self-efficacy in engineering pedagogy. Instructional shifts envisioned by NGSS, especially with inclusion of engineering, require substantial learning by teachers. For rural schools, due to geographic location and smaller collegial networks, there are challenges in providing content-specific professional learning. This project gathered researchers from four states to provide PL aligned to NGSS and delivered remotely to 150 rural teachers. In summer 2023, experts led a five-day workshop which modeled shifts called for by NGSS (e.g., equitable, discourse-rich, phenomena-based) and provided opportunities to experience next-generation teaching and learning. Likert scale surveys were collected before and after the workshop to gauge self-efficacy regarding teaching science and engineering. We found that science-focused PL, with engineering embedded rather than as stand-alone component, afforded growth in self-efficacy for teaching engineering. Pre-workshop surveys showed that teachers had higher self-efficacy towards teaching science than teaching engineering (Wilcoxon signed-rank; p<.001). Positive attitudes toward teaching science were leveraged to provide PL and pre-workshop to post-workshop analysis showed growth in self-efficacy towards teaching engineering (p<.001). Results are important for professional learning around teaching engineering, for professional learning with rural teachers, and for remote access to professional learning. 
    more » « less
  3. Cognitive science research on learning and instruction is often not directly connected to discipline-based research. In an effort to narrow this gap, this essay integrates research from both fields on five learning and instruction strategies: active retrieval, distributed (spaced) learning, dual coding, concrete examples, and feedback and assessment. These strategies can significantly enhance the effectiveness of science instruction, but they typically do not find their way into the undergraduate classroom. The implementation of these strategies is illustrated through an undergraduate science course for nonmajors called Science in Our Lives. This course provides students with opportunities to use scientific information to solve real-world problems and view science as part of everyday life. 
    more » « less
  4. Universities have been expanding undergraduate data science programs. Involving graduate students in these new opportunities can foster their growth as data science educators. We describe two programs that employ a near-peer mentoring structure, in which graduate students mentor undergraduates, to (a) strengthen their teaching and mentoring skills and (b) provide research and learning experiences for undergraduates from diverse backgrounds. In the Data Science for Social Good program, undergraduate participants work in teams to tackle a data science project with social impact. Graduate mentors guide project work and provide just-in-time teaching and feedback. The Stanford Mentoring in Data Science course offers training in effective and inclusive mentorship strategies. In an experiential learning framework, enrolled graduate students are paired with undergraduate students from non-R1 schools, whom they mentor through weekly one-on-one remote meetings. In end-of-program surveys, mentors reported growth through both programs. Drawing from these experiences, we developed a self-paced mentor training guide, which engages teaching, mentoring and project management abilities. These initiatives and the shared materials can serve as prototypes of future programs that cultivate mutual growth of both undergraduate and graduate students in a high-touch, inclusive, and encouraging environment. 
    more » « less
  5. Learning to teach is a culturally situated activity. As teachers learn, it is important to understand not only what teachers learn, but how they learn. This article describes a qualitative case study of a subset of four teachers’ learning during a professional development surrounding a plate tectonics curriculum. Using qualitative methods, this study tells the story of how the four teachers negotiated professional vision for science teaching around dilemmas that emerged throughout the professional development. By taking a sociocultural perspective on professional vision, researchers can gain insight into how and what teachers learn in professional develop- ment settings because it renders teacher learning complex and nuanced. Additionally, we argue negotiating professional vision parallels sensemak- ing. Sensemaking around science teaching includes grappling with epis- temic issues of science in addition to pedagogy and curriculum. Implications for science teacher education are discussed. Specifically, we argue learning to teach requires teachers to engage in conversations that create opportunities to “get somewhere” in relation to dilemmas they have about teaching. In this way, professional vision is an ongoing process of learning that has no endpoint or ideal articulation of teaching or science. Therefore, by framing professional vision as a process of learning we are able to push back on simplistic descriptions of teaching and science. 
    more » « less