- Award ID(s):
- 1348866
- NSF-PAR ID:
- 10353801
- Date Published:
- Journal Name:
- SIGCSE '17: Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education
- Page Range / eLocation ID:
- 709 to 709
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
One of the critical barriers to increasing pre-collegiate computer science course offerings in the U.S. is a lack of qualified computer science teachers. Programs such as TEALS, a teacher preparation program pairing high school teachers with computing professionals to offer CS courses, provide opportunities for in-service teachers to gain experience teaching computer science. However, it is not clear whether the high school teachers develop sufficient pedagogical expertise to sustain high-quality computer science course offerings at their schools. Furthermore, the field of computer science education lacks valid and reliable ways of measuring pedagogical content knowledge (PCK), a construct that describes the knowledge teachers need for effective instruction. In this poster, the authors present these results from the first year of a three-year NSF grant to study how TEALS participation influences novice computer science teachers' PCK: 1) a theoretical framework describing the critical components of CS PCK, 2) the results of the first field test of a CS PCK assessment, including the psychometric properties of the assessment, and 3) a comparison of how teachers performed on the assessment at the beginning and end of their first year of computer science teaching and how they performed relative to their computing professional mentors.more » « less
-
null (Ed.)K-12 teachers serve a critical role in their students’ development of interest in engineering, especially as engineering content is emphasized in curriculum standards. However, teachers may not be comfortable teaching engineering in their classrooms as it can require a different set of skills from which they are trained. Professional development activities focused on engineering content can help teachers feel more comfortable teaching the subject in their classrooms and can increase their knowledge of engineering and thus their engineering teaching self-efficacy. There are many different types of professional development activities teachers might experience, each one with a set of established best practices. VT PEERS (Virginia Tech Partnering with Educators and Engineers in Rural Communities) is a program designed to provide recurrent hands-on engineering activities to middle school students in or near rural Appalachia. The project partners middle school teachers, university affiliates, and local industry partners throughout the state region to develop and implement engineering activities that align with state defined standards of learning (SOLs). Throughout this partnership, teachers co-facilitate engineering activities in their classrooms throughout the year with the other partners, and teachers have the opportunity to participate in a two-day collaborative workshop every year. VT PEERS held a workshop during the summer of 2019, after the second year of the partnership, to discuss the successes and challenges experienced throughout the program. Three focus groups, one for each grade level involved (grades 6-8), were held during the summit for teachers and industry partners to discuss their experiences. None of the teachers involved in the partnership have formal training in engineering. The transcripts of these focus groups were the focus of the exploratory qualitative data analyses to answer the following research question: How do middle-school teachers develop teaching engineering self-efficacy through professional development activities? Deductive coding of the focus group transcripts was completed using the four sources of self-efficacy: mastery experience, vicarious experience, verbal persuasion and physiological states. The analysis revealed that vicarious experiences can be particularly valuable to increasing teachers’ teaching engineering self-efficacy. For example, teachers valued the ability to play the role of a student in an engineering lesson and being able to share ideas about teaching engineering lessons with other teachers. This information can be useful to develop engineering-focused professional development activities for teachers. Additionally, as teachers gather information from their teaching engineering vicarious experiences, they can inform their own teaching practices and practice reflective teaching as they teach lessons.more » « less
-
There is a critical need for computer scientists in the new digital age, a need that is not being met largely due to a lack of qualified computing teachers in K-12. In this project, we explore a three- year, on-the-job teacher preparation program (TEALS) that pairs high school educators with computing professionals to teach introductory computing courses. We are currently conducting a mixed-methods study to explore the change in teachers' pedagogical content knowledge within this professional development model.more » « less
-
Abstract This study explores the role of conceptual coherence in science teacher learning of science‐specific formative assessment. Conceptual coherence refers to the alignment of ideas about teaching and learning and may be difficult with certain teaching practices, like formative assessment, that have a central role in accountability mechanisms in schools. The case study analyzes how one department of science teachers surfaced and managed issues of coherence as they developed and implemented science‐specific formative assessments during a 3‐year, job‐embedded professional development program. The issues of coherence shifted over the course of the 3 years of professional development as organizational changes happened at the district and the school. These shifting sources of incoherence resulted in varied uptake and use of the resources provided through professional development. When the source of incoherence was with changes introduced by the district or the school administration, the teachers did not leverage the resources provided by the professional development team. However, when the teachers surfaced issues of coherence in their classroom instruction, the science teachers relied on the professional development resources in their sensemaking. The results of this study have implications for the design of science teacher professional learning to provide teachers opportunities to manage sources of incoherence as they work to implement new instructional practices in their classrooms.
-
The recent groundswell of interest in computer science education across many countries has created a pressing need for computing teachers at the secondary level. To satisfy this demand, some educational systems are drawing from their pool of in-service teachers trained in other disciplines. While these transitioning teachers can learn about computing pedagogy and subject matter at professional learning workshops, daily teaching experiences will also be a source of their learning. We studied a co-teaching program where instructional responsibilities were distributed between teachers and volunteers from the tech industry to explore how specific teaching practices supported teacher learning, with a focus on pedagogical content knowledge (PCK). Through qualitative analysis of questionnaire and interview data gathered from three teachers during one school year, we identified the practices they engaged in and how their learning related to the enactment of those practices. Our results highlight several factors that influenced the ways in which teaching practices provided participants with opportunities to learn PCK: (a) active participation of students and volunteers; (b) teacher’s level of content knowledge; (c) interdependent practices; and (d) immediacy of the classroom environment.more » « less