- Award ID(s):
- 1736030
- NSF-PAR ID:
- 10332016
- Date Published:
- Journal Name:
- Limnology and Oceanography
- Volume:
- 66
- Issue:
- 11
- ISSN:
- 0024-3590
- Page Range / eLocation ID:
- 3857 to 3872
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Contexts and discrete stimuli often hierarchically influence the association between a stimulus and outcome. This phenomenon, called occasion setting, is central to modulation-based Pavlovian learning. We conducted two experiments with humans in fear and appetitive conditioning paradigms, training stimuli in differential conditioning, feature-positive discriminations, and feature-negative discriminations. We also investigated the effects of trait anxiety and trait depression on these forms of learning. Results from both experiments showed that participants were able to successfully learn which stimuli predicted the electric shock and monetary reward outcomes. Additionally, as hypothesized, the stimuli trained as occasion setters had little-to-no effect on simple reinforced or non-reinforced stimuli, suggesting the former were indeed occasion setters. Lastly, in fear conditioning, trait anxiety was associated with increases in fear of occasion setter/conditional stimulus compounds; in appetitive conditioning, trait depression was associated with lower expectations of monetary reward for the trained negative occasion setting compound and transfer of the negative occasion setter to the simple reinforced stimulus. These results suggest that clinically anxious individuals may have enhanced fear of occasion setting compounds, and clinically depressed individuals may expect less reward with compounds involving the negative occasion setter.more » « less
-
Understanding the driving mechanisms behind existing patterns of vegetation hydraulic traits and community trait diversity is critical for advancing predictions of the terrestrial carbon cycle because hydraulic traits affect both ecosystem and Earth system responses to changing water availability. Here, we leverage an extensive trait database and a long-term continental forest plot network to map changes in community trait distributions and quantify “trait velocities” (the rate of change in community-weighted traits) for different regions and different forest types across the United States from 2000 to the present. We show that diversity in hydraulic traits and photosynthetic characteristics is more related to local water availability than overall species diversity. Finally, we find evidence for coordinated shifts toward communities with more drought-tolerant traits driven by tree mortality, but the magnitude of responses differs depending on forest type. The hydraulic trait distribution maps provide a publicly available platform to fundamentally advance understanding of community trait change in response to climate change and predictive abilities of mechanistic vegetation models.