Abstract Water inside plants forms a continuous chain from water in soils to the water evaporating from leaf surfaces. Failures in this chain result in reduced transpiration and photosynthesis and are caused by soil drying and/or cavitation‐induced xylem embolism. Xylem embolism and plant hydraulic failure share several analogies to ‘catastrophe theory’ in dynamical systems. These catastrophes are often represented in the physiological and ecological literature as tipping points when control variables exogenous (e.g., soil water potential) or endogenous (e.g., leaf water potential) to the plant are allowed to vary on time scales much longer than time scales associated with cavitation events. Here, plant hydraulics viewed from the perspective of catastrophes at multiple spatial scales is considered with attention to bubble expansion within a xylem conduit, organ‐scale vulnerability to embolism, and whole‐plant biomass as a proxy for transpiration and hydraulic function. The hydraulic safety‐efficiency tradeoff, hydraulic segmentation and maximum plant transpiration are examined using this framework. Underlying mechanisms for hydraulic failure at fine scales such as pit membranes and cell‐wall mechanics, intermediate scales such as xylem network properties and at larger scales such as soil–tree hydraulic pathways are discussed. Understudied areas in plant hydraulics are also flagged where progress is urgently needed. 
                        more » 
                        « less   
                    
                            
                            Explicit Consideration of Plant Xylem Hydraulic Transport Improves the Simulation of Crop Response to Atmospheric Dryness in the U.S. Corn Belt
                        
                    
    
            Abstract Atmospheric dryness (i.e., high vapor pressure deficit, VPD), together with soil moisture stress, limits plant photosynthesis and threatens ecosystem functioning. Regions where rainfall and soil moisture are relatively sufficient, such as the rainfed part of the U.S. Corn Belt, are especially prone to high VPD stress. With globally projected rising VPD under climate change, it is crucial to understand, simulate, and manage its negative impacts on agricultural ecosystems. However, most existing models simulating crop response to VPD are highly empirical and insufficient in capturing plant response to high VPD, and improved modeling approaches are urgently required. In this study, by leveraging recent advances in plant hydraulic theory, we demonstrate that the VPD constraints in the widely used coupled photosynthesis‐stomatal conductance models alone are inadequate to fully capture VPD stress effects. Incorporating plant xylem hydraulic transport significantly improves the simulation of transpiration under high VPD, even when soil moisture is sufficient. Our results indicate that the limited water transport capability from the plant root to the leaf stoma could be a major mechanism of plant response to high VPD stress. We then introduce a Demand‐side Hydraulic Limitation Factor (DHLF) that simplifies the xylem and the leaf segments of the plant hydraulic model to only one parameter yet captures the effect of plant hydraulic transport on transpiration response to high VPD with similar accuracy. We expect the improved understanding and modeling of crop response to high VPD to help contribute to better management and adaptation of agricultural systems in a changing climate. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1847334
- PAR ID:
- 10516429
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 60
- Issue:
- 6
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Plant responses to water stress is a major uncertainty to predicting terrestrial ecosystem sensitivity to drought. Different approaches have been developed to represent plant water stress. Empirical approaches (the empirical soil water stress (or Beta) function and the supply‐demand balance scheme) have been widely used for many decades; more mechanistic based approaches, that is, plant hydraulic models (PHMs), were increasingly adopted in the past decade. However, the relationships between them—and their underlying connections to physical processes—are not sufficiently understood. This limited understanding hinders informed decisions on the necessary complexities needed for different applications, with empirical approaches being mechanistically insufficient, and PHMs often being too complex to constrain. Here we introduce a unified framework for modeling transpiration responses to water stress, within which we demonstrate that empirical approaches are special cases of the full PHM, when the plant hydraulic parameters satisfy certain conditions. We further evaluate their response differences and identify the associated physical processes. Finally, we propose a methodology for assessing the necessity of added complexities of the PHM under various climatic conditions and ecosystem types, with case studies in three typical ecosystems: a humid Midwestern cropland, a semi‐arid evergreen needleleaf forest, and an arid grassland. Notably, Beta function overestimates transpiration when VPD is high due to its lack of constraints from hydraulic transport and is therefore insufficient in high VPD environments. With the unified framework, we envision researchers can better understand the mechanistic bases of and the relationships between different approaches and make more informed choices.more » « less
- 
            The fluxes of energy, water, and carbon from terrestrial ecosystems influence the atmosphere. Land–atmosphere feedbacks can intensify extreme climate events like severe droughts and heatwaves because low soil moisture decreases both evaporation and plant transpiration and increases local temperature. Here, we combine data from a network of temperate and boreal eddy covariance towers, satellite data, plant trait datasets, and a mechanistic vegetation model to diagnose the controls of soil moisture feedbacks to drought. We find that climate and plant functional traits, particularly those related to maximum leaf gas exchange rate and water transport through the plant hydraulic continuum, jointly affect drought intensification. Our results reveal that plant physiological traits directly affect drought intensification and indicate that inclusion of plant hydraulic transport mechanisms in models may be critical for accurately simulating land–atmosphere feedbacks and climate extremes under climate change.more » « less
- 
            Leaf hydraulic networks play an important role not only in fluid transport but also in maintaining whole-plant water status through transient environmental changes in soil-based water supply or air humidity. Both water potential and hydraulic resistance vary spatially throughout the leaf transport network, consisting of xylem, stomata and water-storage cells, and portions of the leaf areas far from the leaf base can be disproportionately disadvantaged under water stress. Besides the suppression of transpiration and reduction of water loss caused by stomatal closure, the leaf capacitance of water storage, which can also vary locally, is thought to be crucial for the maintenance of leaf water status. In order to study the fluid dynamics in these networks, we develop a spatially explicit, capacitive model which is able to capture the local spatiotemporal changes of water potential and flow rate in monocotyledonous and dicotyledonous leaves. In electrical-circuit analogs described by Ohm's law, we implement linear capacitors imitating water storage, and we present both analytical calculations of a uniform one-dimensional model and numerical simulation methods for general spatially explicit network models, and their relation to conventional lumped-element models. Calculation and simulation results are shown for the uniform model, which mimics key properties of a monocotyledonous grass leaf. We illustrate water status of a well-watered leaf, and the lowering of water potential and transpiration rate caused by excised water source or reduced air humidity. We show that the time scales of these changes under water stress are hugely affected by leaf capacitance and resistances to capacitors, in addition to stomatal resistance. Through this modeling of a grass leaf, we confirm the presence of uneven water distribution over leaf area, and also discuss the importance of considering the spatial variation of leaf hydraulic traits in plant biology.more » « less
- 
            Abstract Irrigation is an important adaptation to reduce crop yield loss due to water stress from both soil water deficit (low soil moisture) and atmospheric aridity (high vapor pressure deficit, VPD). Traditionally, irrigation has primarily focused on soil water deficit. Observational evidence demonstrates that stomatal conductance is co-regulated by soil moisture and VPD from water supply and demand aspects. Here we use a validated hydraulically-driven ecosystem model to reproduce the co-regulation pattern. Specifically, we propose a plant-centric irrigation scheme considering water supply-demand dynamics (SDD), and compare it with soil-moisture-based irrigation scheme (management allowable depletion, MAD) for continuous maize cropping systems in Nebraska, United States. We find that, under current climate conditions, the plant-centric SDD irrigation scheme combining soil moisture and VPD, could significantly reduce irrigation water use (−24.0%) while maintaining crop yields, and increase economic profits (+11.2%) and irrigation water productivity (+25.2%) compared with MAD, thus SDD could significantly improve water sustainability.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
