skip to main content


Title: Hydrothermal Performance of Liquid Cooled Battery Thermal Management System with Multiple Inlets
Heat transfer and pumping power of water-cooled thermal management systems (TMSs) for lithium-ion batteries (LIBs) in electric vehicles (EVs) are investigated through a three-dimensional computational approach. TMSs are cylindrical shells that cover LIBs. Water flows through the shell and removes heat from LIBs. The focus of this study is to provide practical insights on the effects of number of inlets on the thermal performance and pumping power of TMSs. Two TMSs with one and four inlets at the top of the TMS’s case are considered. Both TMSs include one outlet, which is located at the bottom of the case. The thermal performance of individual TMSs is evaluated by the maximum temperature of the battery cell and the temperature difference across the cell. The thermal performances are described based on the pumping power. Simulations are performed at different flow rates within a laminar regime. Results indicate that both TMSs provide safe operational temperatures for LIBs. However, compared to the one-inlet design, the four-inlet TMS archives the same thermal performance but at a lower pumping power. The lower pumping power is due to lower pressure drop in the four-inlet TMS resulting from flowing water with lower flow rate at individual inlets, and through a shorter path from individual inlets to the outlet, compared with the one-inlet TMS. Minimizing pumping power without any penalty in the thermal performance is significantly beneficial, especially when the TMS is used for a pack of LIBs in EVs.  more » « less
Award ID(s):
1914751
NSF-PAR ID:
10332058
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 9th International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT’22)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The increased power consumption and continued miniaturization of high-powered electronic components have presented many challenges to their thermal management. To improve the efficiency and reliability of these devices, the high amount of heat that they generate must be properly removed. In this paper, a three-dimensional numerical model has been developed and experimentally validated for several manifold heat sink designs. The goal was to enhance the heat sink's thermal performance while reducing the required pumping power by lowering the pressure drop across the heat sink. The considered designs were benchmarked to a commercially available heat sink in terms of their thermal and hydraulic performances. The proposed manifolds were designed to distribute fluid through alternating inlet and outlet branched internal channels. It was found that using the manifold design with 3 channels reduced the thermal resistance from 0.061 to 0.054 °C/W with a pressure drop reduction of 0.77 kPa from the commercial cold plate. A geometric parametric study was performed to investigate the effect of the manifold's internal channel width on the thermohydraulic performance of the proposed designs. It was found that the thermal resistance decreased as the manifold's channel width decreased, up until a certain width value, below which the thermal resistance started to increase while maintaining low-pressure drop values. Where the thermal resistance significantly decreased in the 7 channels design by 16.4% and maintained a lower pressure drop value below 0.6 kPa. 
    more » « less
  2. In typical data centers, the servers and IT equipment are cooled by air and almost half of total IT power is dedicated to cooling. Hybrid cooling is a combined cooling technology with both air and water, where the main heat generating components are cooled by water or water-based coolants and rest of the components are cooled by air supplied by CRAC or CRAH. Retrofitting the air-cooled servers with cold plates and pumps has the advantage over thermal management of CPUs and other high heat generating components. In a typical 1U server, the CPUs were retrofitted with cold plates and the server tested with raised coolant inlet conditions. The study showed the server can operate with maximum utilization for CPUs, DIMMs, and PCH for inlet coolant temperature from 25–45 °C following the ASHRAE guidelines. The server was also tested for failure scenarios of the pumps and fans with reducing numbers of fans and pumps. To reduce cooling power consumption at the facility level and increase air-side economizer hours, the hybrid cooled server can be operated at raised inlet air temperatures. The trade-off in energy savings at the facility level due to raising the inlet air temperatures versus the possible increase in server fan power and component temperatures is investigated. A detailed CFD analysis with a minimum number of server fans can provide a way to find an operating range of inlet air temperature for a hybrid cooled server. Changes in the model are carried out in 6SigmaET for an individual server and compared to the experimental data to validate the model. The results from this study can be helpful in determining the room level operating set points for data centers housing hybrid cooled server racks. 
    more » « less
  3. A water-cooled multi-die heat sink with parallel rectangular micro-channels was designed to satisfy the operational requirements of a multi-die processor. A shape optimization strategy based on the RSM (response surface method) was used to minimize pressure drop and die maximum case temperatures. The effects of the thermal interface materials and heat spreader between the dies and heat sink were captured by the numerical simulation. The optimization was performed for constant values of coolant flow rate and inlet temperature, as well as the power, location, and surface area of the dies. The influence of channel hydraulic diameter, Reynolds number, thermal entrance length, and total heat transfer surface area on the hydraulic and thermal performance of the heat sink was determined using CFD (computational fluid dynamics) simulations at RSM design points. A sensitivity analysis was performed to evaluate the effect of the design parameters on the response parameters. The optimum designs were achieved by minimizing a weighted objective function defined based on response parameters using JAYA algorithm. The results of weighted sum method were compared with Pareto based three objective optimization with a NSGA-II (non-dominated sorting GENETIC algorithm). Finally, a parametric study was performed to see the effect of the design parameters on the response parameters. 
    more » « less
  4. null (Ed.)
    Abstract. Oxidation flow reactors (OFRs) have been developed to achieve high degrees of oxidant exposures over relatively short space times (defined as the ratio of reactor volume to the volumetric flow rate). While, due to their increased use, attention has been paid to their ability to replicate realistic tropospheric reactions by modeling the chemistry inside the reactor, there is a desire to customize flow patterns. This work demonstrates the importance of decoupling tracer signal of the reactor from that of the tubing when experimentally obtaining these flow patterns. We modeled the residence time distributions (RTDs) inside the Washington University Potential Aerosol Mass (WU-PAM) reactor, an OFR, for a simple set of configurations by applying the tank-in-series (TIS) model, a one-parameter model, to a deconvolution algorithm. The value of the parameter, N, is close to unity for every case except one having the highest space time. Combined, the results suggest that volumetric flow rate affects mixing patterns more than use of our internals. We selected results from the simplest case, at 78 s space time with one inlet and one outlet, absent of baffles and spargers, and compared the experimental F curve to that of a computational fluid dynamics (CFD) simulation. The F curves, which represent the cumulative time spent in the reactor by flowing material, match reasonably well. We value that the use of a small aspect ratio reactor such as the WU-PAM reduces wall interactions; however sudden apertures introduce disturbances in the flow, and suggest applying the methodology of tracer testing described in this work to investigate RTDs in OFRs to observe the effect of modified inlets, outlets and use of internals prior to application (e.g., field deployment vs. laboratory study). 
    more » « less
  5. Miniaturization of microelectronic components comes at a price of high heat flux density. By adopting liquid cooling, the rising demand of high heat flux devices can be met while the reliability of the microelectronic devices can also be improved to a greater extent. Liquid cooled cold plates are largely replacing air based heat sinks for electronics in data center applications, thanks to its large heat carrying capacity. A bench level study was carried out to characterize the thermohydraulic performance of two microchannel cold plates which uses warm DI water for cooling Multi Chip Server Modules (MCM). A laboratory built mock package housing mock dies and a heat spreader was employed while assessing the thermal performance of two different cold plate designs at varying coolant flow rate and temperature. The case temperature measured at the heat spreader for varying flow rates and input power were essential in identifying the convective resistance. The flow performance was evaluated by measuring the pressure drop across cold plate module at varying flow rates. Cold plate with the enhanced microchannel design yielded better results compared to a traditional parallel microchannel design. The study conducted at higher coolant temperatures yielded lower pressure drop values with no apparent change in the thermal behavior using different cold plates. The tests conducted after reversing the flow direction in microchannels provide an insight at the effect of neighboring dies on each other and reveal the importance of package specific cold plate designs for top performance. The experimental results were validated using a numerical model which are further optimized for improved geometric designs. 
    more » « less