4d transition metal oxides have emerged as promising materials for numerous applications including high mobility electronics. SrNbO3 is one such candidate material, serving as a good donor material in interfacial oxide systems and exhibiting high electron mobility in ultrathin films. However, its synthesis is challenging due to the metastable nature of the d1 Nb4+ cation and the limitations in the delivery of refractory Nb. To date, films have been grown primarily by pulsed laser deposition (PLD), but development of a means to grow and stabilize the material via molecular beam epitaxy (MBE) would enable studies of interfacial phenomena and multilayer structures that may be challenging by PLD. To that end, SrNbO3 thin films were grown using hybrid MBE for the first time using a tris(diethylamido)(tert-butylimido) niobium precursor for Nb and an elemental Sr source on GdScO3 substrates. Varying thicknesses of insulating SrHfO3 capping layers were deposited using a hafnium tert-butoxide precursor for Hf on top of SrNbO3 films to preserve the metastable surface. Grown films were transferred in vacuo for x-ray photoelectron spectroscopy to quantify elemental composition, density of states at the Fermi energy, and Nb oxidation state. Ex situ studies by x-ray absorption near edge spectroscopy and scanning transmission electron microscopy illustrate that the SrHfO3 capping plays an important role in preserving the crystalline quality of the material and the Nb 4d1 metastable charge state under atmospheric conditions.
more »
« less
An Overview of Nano Multilayers as Model Systems for Developing Nanoscale Microstructures
The microstructural transformations of binary nanometallic multilayers (NMMs) to equiaxed nanostructured materials were explored by characterizing a variety of nanoscale multilayer films. Four material systems of multilayer films, Hf-Ti, Ta-Hf, W-Cr, and Mo-Au, were synthesized by magnetron sputtering, heat treated at 1000 °C, and subsequently characterized by transmission electron microscopy. Binary systems were selected based on thermodynamic models predicting stable nanograin formation with similar global compositions around 20–30 at.%. All NMMs maintained nanocrystalline grain sizes after evolution into an equiaxed structure, where the systems with highly mobile incoherent interfaces or higher energy interfaces showed a more significant increase in grain size. Furthermore, varying segregation behaviors were observed, including grain boundary (GB) segregation, precipitation, and intermetallic formation depending on the material system selected. The pathway to tailored microstructures was found to be governed by key mechanisms and factors as determined by a film’s initial characteristics, including global and local composition, interface energy, layer structure, and material selection. This work presents a global evaluation of NMM systems and demonstrates their utility as foundation materials to promote tailored nanomaterials.
more »
« less
- Award ID(s):
- 1709771
- PAR ID:
- 10332088
- Date Published:
- Journal Name:
- Materials
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 1996-1944
- Page Range / eLocation ID:
- 382
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Inconel 718 is a widely popular aerospace superalloy known for its high-temperature performance and resistance to oxidation, creep, and corrosion. Traditional manufacturing methods, like casting and powder metallurgy, face challenges with intricate shapes that can result in porosity and uniformity issues. On the other hand, Additive Manufacturing (AM) techniques such as Powder Bed Fusion (PBF) and Direct Energy Deposition (DED) can allow the creation of intricate single-part components to reduce weight and maintain structural integrity. However, AM parts often exhibit directional solidification, leading to anisotropic properties and potential crack propagation sites. To address this, post-processing treatments like HIP and heat treatment are necessary. This study explores the effects of the raster and stochastic spot melt scanning strategies on the microstructural and mechanical properties of IN718 parts fabricated using Electron Beam Powder Bed Fusion (EB-PBF). This research demonstrates that raster scanning produces columnar grains with higher mean aspect ratios. Stochastic spot melt scanning facilitates the formation of equiaxed grains, which enhances microstructural refinement and lowers anisotropy. The highest microstructural values were recorded in the raster-produced columnar grain structure. Conversely, the stochastic melt-produced transition from columnar to equiaxed grain structure demonstrated increased hardness with decreasing grain size; however, the hardness of the smallest equiaxed grain structure was slightly less than that of the columnar grain structure. These findings underscore the vital importance of scanning strategies in optimizing the EB-PBF process to enhance material properties.more » « less
-
The weldability of plain and inoculated 6061 aluminum processed with gas metal arc directed energy deposition (GMA-DED) was evaluated and compared to wrought 6061. Autogenous gas tungsten arc welds of varying heat inputs were made, and the degree of solidification cracking was evaluated. The degree of cracking in the inoculated 6061 material was lower than that of plain GMA-DED and wrought 6061. Microstructure characterization revealed that the welds on the inoculated 6061 produced fine, equiaxed grains, whereas the plain 6061 showed coarse, columnar grains. A combination of heat transfer and solidification models were employed to predict the solidification morphology of the 6061 welds, which closely matched the experimental results in all cases. A model was developed to understand the effect of grain morphology on solidification cracking, and it was found that equiaxed grains shifted the critical liquid film range for cracking to lower solid fractions where thermal stresses are the lowest. However, cracking can be caused if sufficient external stresses are applied when the critical liquid film thickness is present during solidification of the equiaxed grain structure. This work provides insight into the role grain size and morphology control can have in suppressing solidification cracking of other aluminum alloys.more » « less
-
In the Raman probing of multilayer thin film materials, the intensity of the measured Raman scattered light will be impacted by the thickness of the thin film layers. The Raman signal intensity will vary non-monotonically with thickness due to interference from the multiple reflections of both the incident laser light and the Raman scattered light of thin film interfaces. Here, a method for calculating the Raman signal intensity from a multilayer thin film system based on the transfer matrix method with a rigorous treatment of the Raman signal generation (discontinuity) is presented. This calculation methodology is valid for any thin film stack with an arbitrary number of layers with arbitrary thicknesses. This approach is applied to several thin film material systems, including silicon-on-sapphire thin films, graphene on Si with a SiO2capping layer, and multilayer MoS2with the presence of a gap between layers and substrate. Different applications where this method can be used in the Raman probing of thin film material properties are discussed.more » « less
-
Solid oxide cell (SOC) based energy conversion systems have the potential to become the cleanest and most efficient systems for reversible conversion between electricity and chemical fuels due to their high efficiency, low emission, and excellent fuel flexibility. Broad implementation of this technology is however hindered by the lack of high-performance electrode materials. While many perovskite-based materials have shown remarkable promise as electrodes for SOCs, cation enrichment or segregation near the surface or interfaces is often observed, which greatly impacts not only electrode kinetics but also their durability and operational lifespan. Since the chemical and structural variations associated with surface enrichment or segregation are typically confined to the nanoscale, advanced experimental and computational tools are required to probe the detailed composition, structure, and nanostructure of these near-surface regions in real time with high spatial and temporal resolutions. In this review article, an overview of the recent progress made in this area is presented, highlighting the thermodynamic driving forces, kinetics, and various configurations of surface enrichment and segregation in several widely studied perovskite-based material systems. A profound understanding of the correlation between the surface nanostructure and the electro-catalytic activity and stability of the electrodes is then emphasized, which is vital to achieving the rational design of more efficient SOC electrode materials with excellent durability. Furthermore, the methodology and mechanistic understanding of the surface processes are applicable to other materials systems in a wide range of applications, including thermo-chemical photo-assisted splitting of H 2 O/CO 2 and metal–air batteries.more » « less
An official website of the United States government

