skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Elevated risk of tropical cyclone precipitation and pluvial flood in Houston under global warming
Abstract Pluvial floods generated by tropical cyclones (TCs) are one of the major concerns for coastal communities. Choosing Houston as an example, we demonstrate that there will be significantly elevated risk of TC rainfall and flood in the future warming world by coupling downscaled TCs from Model Intercomparison Project Phase 6 models with physical hydrological models. We find that slower TC translation speed, more frequent stalling, greater TC frequency, and increased rain rate are major contributors to increased TC rainfall risk and flood risk. The TC flood risk increases more than the rainfall. Smaller watersheds with a high degree of urbanization are particularly vulnerable to future changes in TC floods in a warming world.  more » « less
Award ID(s):
1854929
PAR ID:
10332183
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Environmental Research Letters
Volume:
16
Issue:
9
ISSN:
1748-9326
Page Range / eLocation ID:
094030
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The parametric hurricane rainfall model (PHRaM), firstly introduced in 2007, has been widely used to forecast and quantify tropical-cyclone-induced rainfall (TC rainfall). The PHRaM is much more computationally efficient than global climate models, but PHRaM cannot be effectively utilized in the context of climate change because it does not have any parameters to capture the increase of tropospheric water vapor under the warming world. This study develops a new model that incorporates tropospheric water vapor to the PHRaM framework, named as the PHRaM with moisture (PHRaMM). The PHRaMM is trained to best fit the TC rainfall over the western North Pacific (WNP) unlike the PHRaM trained with the TCs over the continental US. The PHRaMM reliably simulates radial profile of TC rainfall and spatial distribution of accumulated rainfall during landfall in the present climate with the better prediction skills than existing statistical and operational numerical models. Using the PHRaMM, we evaluated the impacts of TC intensity and environmental moisture increase on TC rainfall change in a future climate. An increased TC intensity causes TC rainfall to increase in the inner-core region but to decrease in the outer region, whereas an increased environmental moisture causes the TC rainfall to increase over the entire TC area. According to the both effects of increased TC intensity and environmental moisture, the PHRaMM projected that the WNP TC rainfall could increase by 4.61–8.51% in the inner-core region and by 17.96–20.91% over the entire TC area under the 2-K warming scenario. 
    more » « less
  2. Abstract Compound flooding, characterized by the co‐occurrence of multiple flood mechanisms, is a major threat to coastlines across the globe. Tropical cyclones (TCs) are responsible for many compound floods due to their storm surge and intense rainfall. Previous efforts to quantify compound flood hazard have typically adopted statistical approaches that may be unable to fully capture spatio‐temporal dynamics between rainfall‐runoff and storm surge, which ultimately impact total water levels. In contrast, we pose a physics‐driven approach that utilizes a large set of realistic TC events and a simplified physics‐based rainfall model and simulates each event within a hydrodynamic model framework. We apply our approach to investigate TC flooding in the Cape Fear River, NC. We find TC approach angle, forward speed, and intensity are relevant for compound flood potential, but rainfall rate and time lag between the centroid of rainfall and peak storm tide are the strongest predictors of compounding magnitude. Neglecting rainfall underestimates 100‐year flood depths across 28% of the floodplain, and taking the maximum of each hazard modeled separately still underestimates 16% of the floodplain. We find the main stem of the river is surge‐dominated, upstream portions of small streams and pluvial areas are rainfall dominated, but midstream portions of streams are compounding zones, and areas close to the coastline are surge dominated for lower return periods but compounding zones for high return periods (100 years). Our method links joint rainfall‐surge occurrence to actual flood impacts and demonstrates how compound flooding is distributed across coastal catchments. 
    more » « less
  3. Abstract. In coastal regions, compound flooding can arise from a combination of different drivers such as storm surges, high tides, excess river discharge, and rainfall. Compound flood potential is often assessed by quantifying the dependence and joint probabilities of the flood drivers using multivariate models. However, most of these studies assume that all extreme events originate from a single population. This assumption may not be valid for regions where flooding can arise from different generation processes, e.g., tropical cyclones (TCs) and extratropical cyclones (ETCs). Here we present a flexible copula-based statistical framework to assess compound flood potential from multiple flood drivers while explicitly accounting for different storm types. The proposed framework is applied to Gloucester City, New Jersey, and St. Petersburg, Florida as case studies. Our results highlight the importance of characterizing the contributions from TCs and non-TCs separately to avoid potential underestimation of the compound flood potential. In both study regions, TCs modulate the tails of the joint distributions (events with higher return periods) while non-TC events have a strong effect on events with low to moderate joint return periods. We show that relying solely on TCs may be inadequate when estimating compound flood risk in coastal catchments that are also exposed to other storm types. We also assess the impact of non-classified storms that are neither linked to TCs or ETCs in the region (such as locally generated convective rainfall events and remotely forced storm surges). The presented study utilizes historical data and analyzes two populations, but the framework is flexible and can be extended to account for additional storm types (e.g., storms with certain tracks or other characteristics) or can be used with model output data including hindcasts or future projections. 
    more » « less
  4. In coastal regions, compound flooding can arise from a combination of different drivers, such as storm surges, high tides, excess river discharge, and rainfall. Compound flood potential is often assessed by quantifying the dependence and joint probabilities of flood drivers using multivariate models. However, most of these studies assume that all extreme events originate from a single population. This assumption may not be valid for regions where flooding can arise from different generation processes, e.g., tropical cyclones (TCs) and extratropical cyclones (ETCs). Here we present a flexible copula-based statistical framework to assess compound flood potential from multiple flood drivers while explicitly accounting for different storm types. The proposed framework is applied to Gloucester City, New Jersey, and St. Petersburg, Florida, as case studies. Our results highlight the importance of characterizing the contributions from TCs and non-TCs separately to avoid potential underestimation of the compound flood potential. In both study regions, TCs modulate the tails of the joint distributions (events with higher return periods), while non-TC events have a strong effect on events with low to moderate joint return periods. We show that relying solely on TCs may be inadequate when estimating compound flood risk in coastal catchments that are also exposed to other storm types. We also assess the impact of non-classified storms that are not linked to either TCs or ETCs in the region (such as locally generated convective rainfall events and remotely forced storm surges). The presented study utilizes historical data and analyzes two populations, but the framework is flexible and can be extended to account for additional storm types (e.g., storms with certain tracks or other characteristics) or can be used with model output data including hindcasts or future projections. 
    more » « less
  5. Abstract One of the most costly effects of climate change will be its impact on extreme weather events, including tropical cyclones (TCs). Understanding these changes is of growing importance, and high resolution global climate models are providing potential for such studies, specifically for TCs. Beyond the difficulties associated with TC behavior in a warming climate, the extratropical transition (ET) of TCs into post-tropical cyclones (PTCs) creates another challenge when understanding these events and any potential future changes. PTCs can produce excessive rainfall despite losing their original tropical characteristics. The present study examines the representation of PTCs and their precipitation in three high resolution (25–50 km) climate models: CNRM, MRI, and HadGEM. All three of these models agree on a simulated decrease in TC and PTC events in the future warming scenario, yet they lack consistency in simulated regional patterns of these changes, which is further evident in regional changes in PTC-related precipitation. The models also struggle with their represented intensity evolution of storms during and after the ET process. Despite these limitations in simulating intensity and regional characteristics, the models all simulate a shift toward more frequent rain rates above 10 mm h−1in PTCs. These high rain rates become 4%–12% more likely in the warmer climate scenario, resulting in a 5%–12% increase in accumulated rainfall from these rates. 
    more » « less