skip to main content


Title: Group testing for overlapping communities
In this paper, we propose algorithms that leverage a known community structure to make group testing more efficient. We consider a population organized in connected communities: each individual participates in one or more communities, and the infection probability of each individual depends on the communities (s)he participates in. Use cases include students who participate in several classes, and workers who share common spaces. Group testing reduces the number of tests needed to identify the infected individuals by pooling diagnostic samples and testing them together. We show that making testing algorithms aware of the community structure, can significantly reduce the number of tests needed both for adaptive and non-adaptive group testing.  more » « less
Award ID(s):
1705077 2007714
NSF-PAR ID:
10332231
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ICC 2021 - IEEE International Conference on Communications
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we propose algorithms that leverage a known community structure to make group testing more efficient. We consider a population organized in disjoint communities: each individual participates in a community, and its infection probability depends on the community (s)he participates in. Use cases include families, students who participate in several classes, and workers who share common spaces. Group testing reduces the number of tests needed to identify the infected individuals by pooling diagnostic samples and testing them together. We show that if we design the testing strategy taking into account the community structure, we can significantly reduce the number of tests needed for adaptive and non-adaptive group testing, and can improve the reliability in cases where tests are noisy. 
    more » « less
  2. Group testing is a technique that can reduce the number of tests needed to identify infected members in a population, by pooling together multiple diagnostic samples. Despite the variety and importance of prior results, traditional work on group testing has typically assumed independent infections. However, contagious diseases among humans, like SARS-CoV-2, have an important characteristic: infections are governed by community spread, and are therefore correlated. In this paper, we explore this observation and we argue that taking into account the community structure when testing can lead to significant savings in terms of the number of tests required to guarantee a given identification accuracy. To show that, we start with a simplistic (yet practical) infection model, where the entire population is organized in (possibly overlapping) communities and the infection probability of an individual depends on the communities (s)he participates in. Given this model, we compute new lower bounds on the number of tests for zero-error identification and design community-aware group testing algorithms that can be optimal under assumptions. Finally, we demonstrate significant benefits over traditional, community-agnostic group testing via simulations using both noiseless and noisy tests 
    more » « less
  3. High‐volume testing of clinical specimens for sexually transmitted diseases is performed frequently by a process known as group testing. This algorithmic process involves testing portions of specimens from separate individuals together as one unit (or “group”) to detect diseases. Retesting is performed on groups that test positively in order to differentiate between positive and negative individual specimens. The overall goal is to use the least number of tests possible across all individuals without sacrificing diagnostic accuracy. One of the most efficient group testing algorithms is array testing. In its simplest form, specimens are arranged into a grid‐like structure so that row and column groups can be formed. Positive‐testing rows/columns indicate which specimens to retest. With the growing use of multiplex assays, the increasing number of diseases tested by these assays, and the availability of subject‐specific risk information, opportunities exist to make this testing process even more efficient. We propose specific specimen arrangements within an array that can reduce the number of retests needed when compared with other array testing algorithms. We examine how to calculate operating characteristics, including the expected number of tests and the SD for the number of tests, and then subsequently find a best arrangement. Our methods are illustrated for chlamydia and gonorrhea detection with the Aptima Combo 2 Assay. We also provide R functions to make our research accessible to laboratories.

     
    more » « less
  4. Abstract

    Mass testing is essential for identifying infected individuals during an epidemic and allowing healthy individuals to return to normal social activities. However, testing capacity is often insufficient to meet global health needs, especially during newly emerging epidemics. Dorfman’s method, a classic group testing technique, helps reduce the number of tests required by pooling the samples of multiple individuals into a single sample for analysis. Dorfman’s method does not consider the time dynamics or limits on testing capacity involved in infection detection, and it assumes that individuals are infected independently, ignoring community correlations. To address these limitations, we present an adaptive group testing (AGT) strategy based on graph partitioning, which divides a physical contact network into subgraphs (groups of individuals) and assigns testing priorities based on the social contact characteristics of each subgraph. Our AGT aims to maximize the number of infected individuals detected and minimize the number of tests required. After each testing round (perhaps on a daily basis), the testing priority is increased for each neighboring group of known infected individuals. We also present an enhanced infectious disease transmission model that simulates the dynamic spread of a pathogen and evaluate our AGT strategy using the simulation results. When applied to 13 social contact networks, AGT demonstrates significant performance improvements compared to Dorfman’s method and its variations. Our AGT strategy requires fewer tests overall, reduces disease spread, and retains robustness under changes in group size, testing capacity, and other parameters. Testing plays a crucial role in containing and mitigating pandemics by identifying infected individuals and helping to prevent further transmission in families and communities. By identifying infected individuals and helping to prevent further transmission in families and communities, our AGT strategy can have significant implications for public health, providing guidance for policymakers trying to balance economic activity with the need to manage the spread of infection.

     
    more » « less
  5. Accurate detection of infected individuals is one of the critical steps in stopping any pandemic. When the underlying infection rate of the disease is low, testing people in groups, instead of testing each individual in the population, can be more efficient. In this work, we consider noisy adaptive group testing design with specific test sensitivity and specificity that select the optimal group given previous test results based on pre-selected utility function. As in prior studies on group testing, we model this problem as a sequential Bayesian Optimal Experimental Design (BOED) to adaptively design the groups for each test. We analyze the required number of group tests when using the updated posterior on the infection status and the corresponding Mutual Information (MI) as our utility function for selecting new groups. More importantly, we study how the potential bias on the ground-truth noise of group tests may affect the group testing sample complexity. 
    more » « less