skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptive Group Testing with Mismatched Models
Accurate detection of infected individuals is one of the critical steps in stopping any pandemic. When the underlying infection rate of the disease is low, testing people in groups, instead of testing each individual in the population, can be more efficient. In this work, we consider noisy adaptive group testing design with specific test sensitivity and specificity that select the optimal group given previous test results based on pre-selected utility function. As in prior studies on group testing, we model this problem as a sequential Bayesian Optimal Experimental Design (BOED) to adaptively design the groups for each test. We analyze the required number of group tests when using the updated posterior on the infection status and the corresponding Mutual Information (MI) as our utility function for selecting new groups. More importantly, we study how the potential bias on the ground-truth noise of group tests may affect the group testing sample complexity.  more » « less
Award ID(s):
2119103
PAR ID:
10460967
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Page Range / eLocation ID:
4533 to 4537
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Group testing is a technique that can reduce the number of tests needed to identify infected members in a population, by pooling together multiple diagnostic samples. Despite the variety and importance of prior results, traditional work on group testing has typically assumed independent infections. However, contagious diseases among humans, like SARS-CoV-2, have an important characteristic: infections are governed by community spread, and are therefore correlated. In this paper, we explore this observation and we argue that taking into account the community structure when testing can lead to significant savings in terms of the number of tests required to guarantee a given identification accuracy. To show that, we start with a simplistic (yet practical) infection model, where the entire population is organized in (possibly overlapping) communities and the infection probability of an individual depends on the communities (s)he participates in. Given this model, we compute new lower bounds on the number of tests for zero-error identification and design community-aware group testing algorithms that can be optimal under assumptions. Finally, we demonstrate significant benefits over traditional, community-agnostic group testing via simulations using both noiseless and noisy tests 
    more » « less
  2. Pantea, Casian (Ed.)
    Limited testing capacity for COVID-19 has hampered the pandemic response. Pooling is a testing method wherein samples from specimens (e.g., swabs) from multiple subjects are combined into a pool and screened with a single test. If the pool tests positive, then new samples from the collected specimens are individually tested, while if the pool tests negative, the subjects are classified as negative for the disease. Pooling can substantially expand COVID-19 testing capacity and throughput, without requiring additional resources. We develop a mathematical model to determine the best pool size for different risk groups , based on each group’s estimated COVID-19 prevalence. Our approach takes into consideration the sensitivity and specificity of the test, and a dynamic and uncertain prevalence, and provides a robust pool size for each group. For practical relevance, we also develop a companion COVID-19 pooling design tool (through a spread sheet). To demonstrate the potential value of pooling, we study COVID-19 screening using testing data from Iceland for the period, February-28-2020 to June-14-2020, for subjects stratified into high- and low-risk groups. We implement the robust pooling strategy within a sequential framework, which updates pool sizes each week, for each risk group, based on prior week’s testing data. Robust pooling reduces the number of tests, over individual testing, by 88.5% to 90.2%, and 54.2% to 61.9%, respectively, for the low-risk and high-risk groups (based on test sensitivity values in the range [0.71, 0.98] as reported in the literature). This results in much shorter times, on average, to get the test results compared to individual testing (due to the higher testing throughput), and also allows for expanded screening to cover more individuals. Thus, robust pooling can potentially be a valuable strategy for COVID-19 screening. 
    more » « less
  3. Feldman, Marcus (Ed.)
    Characterizing the relationship between disease testing behaviors and infectious disease dynamics is of great importance for public health. Tests for both current and past infection can influence disease-related behaviors at the individual level, while population-level knowledge of an epidemic’s course may feed back to affect one’s likelihood of taking a test. The COVID-19 pandemic has generated testing data on an unprecedented scale for tests detecting both current infection (PCR, antigen) and past infection (serology); this opens the way to characterizing the complex relationship between testing behavior and infection dynamics. Leveraging a rich database of individualized COVID-19 testing histories in New Jersey, we analyze the behavioral relationships between PCR and serology tests, infection, and vaccination. We quantify interactions between individuals’ test-taking tendencies and their past testing and infection histories, finding that PCR tests were disproportionately taken by people currently infected, and serology tests were disproportionately taken by people with past infection or vaccination. The effects of previous positive test results on testing behavior are less consistent, as individuals with past PCR positives were more likely to take subsequent PCR and serology tests at some periods of the epidemic time course and less likely at others. Lastly, we fit a model to the titer values collected from serology tests to infer vaccination trends, finding a marked decrease in vaccination rates among individuals who had previously received a positive PCR test. These results exemplify the utility of individualized testing histories in uncovering hidden behavioral variables affecting testing and vaccination. 
    more » « less
  4. In this paper, we propose algorithms that leverage a known community structure to make group testing more efficient. We consider a population organized in disjoint communities: each individual participates in a community, and its infection probability depends on the community (s)he participates in. Use cases include families, students who participate in several classes, and workers who share common spaces. Group testing reduces the number of tests needed to identify the infected individuals by pooling diagnostic samples and testing them together. We show that if we design the testing strategy taking into account the community structure, we can significantly reduce the number of tests needed for adaptive and non-adaptive group testing, and can improve the reliability in cases where tests are noisy. 
    more » « less
  5. Motivated by testing for pathogenic diseases we con- sider a new nonadaptive group testing problem for which: (1) positives occur within a burst, capturing the fact that infected test subjects often come in clusters, and (2) that the test outcomes arise from semiquantitative measurements that provide coarse information about the number of positives in any tested group. Our model generalizes prior work on detecting a single burst with classical group testing [1] to the setting of semiquantitative group testing (SQGT) [2]. Speci cally, we study the setting where the burst-length l is known and the semiquantitative tests provide potentially nonuniform estimates on the number of positives in a test group. The estimates represent the index of a quantization bin containing the (exact) total number of positives, for arbitrary thresholds η1,...,ηs. Interestingly, we show that the minimum number of tests needed for burst identi cation is essentially only a function of the largest threshold ηs. In this context, our main result is an order-optimal test scheme that can recover any burst of length l using roughly \ell/2\eta + log (n) measurements. This suggests that 2ηs s+1 a large saturation level ηs is more important than nely quantized information when dealing with bursts. We also provide results for related modeling assumptions and specialized choices of thresholds. 
    more » « less