Background Remote patient monitoring (RPM) technologies can support patients living with chronic conditions through self-monitoring of physiological measures and enhance clinicians’ diagnostic and treatment decisions. However, to date, large-scale pragmatic RPM implementation within health systems has been limited, and understanding of the impacts of RPM technologies on clinical workflows and care experience is lacking. Objective In this study, we evaluate the early implementation of operational RPM initiatives for chronic disease management within the ambulatory network of an academic medical center in New York City, focusing on the experiences of “early adopter” clinicians and patients. Methods Using a multimethod qualitative approach, we conducted (1) interviews with 13 clinicians across 9 specialties considered as early adopters and supporters of RPM and (2) speculative design sessions exploring the future of RPM in clinical care with 21 patients and patient representatives, to better understand experiences, preferences, and expectations of pragmatic RPM use for health care delivery. Results We identified themes relevant to RPM implementation within the following areas: (1) data collection and practices, including impacts of taking real-world measures and issues of data sharing, security, and privacy; (2) proactive and preventive care, including proactive and preventive monitoring, and proactive interventions and support; and (3) health disparities and equity, including tailored and flexible care and implicit bias. We also identified evidence for mitigation and support to address challenges in each of these areas. Conclusions This study highlights the unique contexts, perceptions, and challenges regarding the deployment of RPM in clinical practice, including its potential implications for clinical workflows and work experiences. Based on these findings, we offer implementation and design recommendations for health systems interested in deploying RPM-enabled health care.
more »
« less
Tedious Versus Taxing: The Nature of Work in a Behavioral Health Context
The goal of this study was to examine the work practices of behavioral health professionals with a view towards designing interactive systems to support their work. We conducted a qualitative workplace study, including in situ observations and semi-structured interviews, in a multidisciplinary clinic treating pediatric feeding disorders. This paper contributes a detailed characterization of clinicians' work practices and conducts a comparative analysis of three types of work: treatment, record management, and preparation work. We found that clinicians have a preference for taxing over tedious work. For example, they experience real-time data collection as more taxing but less tedious than retroactive data entry. Design efforts should balance the tension between addressing the taxing (data collection during meals) versus the tedious (manually entering data into spreadsheets). Although addressing the taxing improves within-routine efficiency, addressing the tedious improves overall morale. Further, we hypothesize that there is a rewarding or unrewarding quality to work that is dictated in part by its social, temporal, and clinical characteristics. We discuss conceptual and design implications for supporting clinical work, and highlight considerations unique to behavioral health.
more »
« less
- Award ID(s):
- 1816319
- PAR ID:
- 10332286
- Date Published:
- Journal Name:
- Proceedings of the ACM on Human-Computer Interaction
- Volume:
- 5
- Issue:
- CSCW2
- ISSN:
- 2573-0142
- Page Range / eLocation ID:
- 1 to 24
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Although combination antiretroviral therapy (ART) with three or more drugs is highly effective in suppressing viral load for people with HIV (human immunodeficiency virus), many ART agents may exacerbate mental health‐related adverse effects including depression. Therefore, understanding the effects of combination ART on mental health can help clinicians personalize medicine with less adverse effects to avoid undesirable health outcomes. The emergence of electronic health records offers researchers' unprecedented access to HIV data including individuals' mental health records, drug prescriptions, and clinical information over time. However, modeling such data is challenging due to high dimensionality of the drug combination space, the individual heterogeneity, and sparseness of the observed drug combinations. To address these challenges, we develop a Bayesian nonparametric approach to learn drug combination effect on mental health in people with HIV adjusting for sociodemographic, behavioral, and clinical factors. The proposed method is built upon the subset‐tree kernel that represents drug combinations in a way that synthesizes known regimen structure into a single mathematical representation. It also utilizes a distance‐dependent Chinese restaurant process to cluster heterogeneous populations while considering individuals' treatment histories. We evaluate the proposed approach through simulation studies, and apply the method to a dataset from the Women's Interagency HIV Study, showing the clinical utility of our model in guiding clinicians to prescribe informed and effective personalized treatment based on individuals' treatment histories and clinical characteristics.more » « less
-
Challenging behaviors significantly impact learning and socialization of autistic children and can stress and burden their caregivers. Documentation of challenging behaviors is fundamental for identifying what environmental factors influence them, such as how others respond to a child's such behaviors. Caregiver-tracked data on their child's challenging behaviors can help clinical experts make informed recommendations about how to manage such behaviors. To support caregivers in recording their children's challenging behaviors, we developed GeniAuti, a mobile-based data-collection tool built upon a clinical data collection form to document challenging behaviors and other clinically relevant contextual information such as place, duration, intensity, and what triggers such behaviors. Through an open-ended deployment with 19 parent-child pairs and three expert collaborators, caregivers found GeniAuti valuable for (1) becoming more attentive and reflective to behavioral contexts, including their own response strategies, (2) discovering positive aspects of their children's behaviors, and (3) promoting collaboration with clinical experts around the caregiver-tracked data to develop tailored intervention strategies for their children. However, participant experiences surface challenges of logging behaviors in social circumstances, conflicting views between caregivers and clinical experts around the structured recording process, and emotional struggles resulting from recording and reflecting on intensely negative experiences. Considering the complex nature of caregiver-based health tracking and caregiver--clinician collaboration, we suggest design opportunities for facilitating negotiations between caregivers and clinicians and accounting for caregivers' emotional needs.more » « less
-
Patient-generated data (PGD) show great promise for informing the delivery of personalized and patient-centered care. However, patients' data tracking does not automatically lead to data sharing and discussion with clinicians, which can make it difficult to utilize and derive optimal benefit from PGD. In this paper, we investigate whether and how patients share their PGD with clinicians and the types of challenges that arise within this context. We describe patients' immediate experiences of PGD sharing with clinicians, based on our short onsite interviews with 57 patients who had just met with a clinician at a university health center. Our analyses identified overarching patterns in patients' PGD sharing practices and the associated challenges that arise from the information asymmetry between patients and clinicians and from patients' reliance on their memory to share their PGD. We discuss the implications of our findings for designing PGD-integrated health IT systems in ways to support patients' tracking of relevant PGD, clinicians' effective engagement with patients around PGD, and the efficient sharing and review of PGD within clinical settings.more » « less
-
Risk information is increasingly available to health care providers and patients thanks to a growing body of health outcomes research and clinical prediction models. Meanwhile, communicating such information is encouraged for a variety of reasons. Yet clinicians often struggle to communicate risk information—or forego the task altogether due to various challenges. The challenges are real, and this paper briefly discusses six of them: (1) Clinician reliance on verbal risk descriptions, (2) Low patient numeracy; (3) Lack of meaningful numeric evidence; (4) Patient use of heuristics; (5) Uncertain risk information; and (6) The curse of knowledge. Specific strategies exist for clinicians, though, to overcome these complex challenges. In the paper, we present evidence-based best practices with examples of what clinicians can do to effectively communicate risk information to their patients (and what they should not do). The best practices include communicating with numbers, not only words; decreasing cognitive effort for patients; providing the meaning of numeric risk data important to decisions; acknowledging uncertainty; and testing communication with patients through teach-back techniques. We conclude by recommending that clinicians integrate these strategies into their existing scripts for patient encounters.more » « less
An official website of the United States government

