skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Single-cell damagenome profiling unveils vulnerable genes and functional pathways in human genome toward DNA damage
We report a novel single-cell whole-genome amplification method (LCS-WGA) that can efficiently capture spontaneous DNA damage existing in single cells. We refer to these damage-associated single-nucleotide variants as “damSNVs,” and the whole-genome distribution of damSNVs as the damagenome. We observed that in single human neurons, the damagenome distribution was significantly correlated with three-dimensional genome structures. This nonuniform distribution indicates different degrees of DNA damage effects on different genes. Next, we identified the functionals that were significantly enriched in the high-damage genes. Similar functionals were also enriched in the differentially expressed genes (DEGs) detected by single-cell transcriptome of both Alzheimer’s disease (AD) and autism spectrum disorder (ASD). This result can be explained by the significant enrichment of high-damage genes in the DEGs of neurons for both AD and ASD. The discovery of high-damage genes sheds new lights on the important roles of DNA damage in human diseases and disorders.  more » « less
Award ID(s):
2021795
PAR ID:
10332307
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
7
Issue:
27
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Current approaches to define chemical-genetic interactions (CGIs) in human cell lines are resource-intensive. We designed a scalable chemical-genetic screening platform by generating a DNA damage response (DDR)-focused custom sgRNA library targeting 1011 genes with 3033 sgRNAs. We performed five proof-of-principle compound screens and found that the compounds’ known modes-of-action (MoA) were enriched among the compounds’ CGIs. These scalable screens recapitulated expected CGIs at a comparable signal-to-noise ratio (SNR) relative to genome-wide screens. Furthermore, time-resolved CGIs, captured by sequencing screens at various time points, suggested an unexpected, late interstrand-crosslinking (ICL) repair pathway response to camptothecin-induced DNA damage. Our approach can facilitate screening compounds at scale with 20-fold fewer resources than commonly used genome-wide libraries and produce biologically informative CGI profiles. 
    more » « less
  2. Cultivated peanut ( Arachis hypogaea ) is one of the most widely grown food legumes in the world, being valued for its high protein and unsaturated oil contents. Drought stress is one of the major constraints that limit peanut production. This study’s objective was to identify the drought-responsive genes preferentially expressed under drought stress in different peanut genotypes. To accomplish this, four genotypes (drought tolerant: C76-16 and 587; drought susceptible: Tifrunner and 506) subjected to drought stress in a rainout shelter experiment were examined. Transcriptome sequencing analysis identified that all four genotypes shared a total of 2,457 differentially expressed genes (DEGs). A total of 139 enriched gene ontology terms consisting of 86 biological processes and 53 molecular functions, with defense response, reproductive process, and signaling pathways, were significantly enriched in the common DEGs. In addition, 3,576 DEGs were identified only in drought-tolerant lines in which a total of 74 gene ontology terms were identified, including 55 biological processes and 19 molecular functions, mainly related to protein modification process, pollination, and metabolic process. These terms were also found in shared genes in four genotypes, indicating that tolerant lines adjusted more related genes to respond to drought. Forty-three significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways were also identified, and the most enriched pathways were those processes involved in metabolic pathways, biosynthesis of secondary metabolites, plant circadian rhythm, phenylpropanoid biosynthesis, and starch and sucrose metabolism. This research expands our current understanding of the mechanisms that facilitate peanut drought tolerance and shed light on breeding advanced peanut lines to combat drought stress. 
    more » « less
  3. Lipoxygenase (LOX) is associated with responses to plant hormones, environmental stresses, and signaling substances. Methyl jasmonate (MeJA) treatment triggers the production of LOX, polyphenol oxidase, and protease inhibitors in various plants, producing resistance to herbivory. To examine the response of MtLOX24 to MeJA, the phenotypic and physiological changes in Medicago truncatula MtLOX24 overexpression and lox mutant plants were investigated. Additionally, wild-type R108, the MtLOX24-overexpressing line L4, and the mutant lox-1 were utilized as experimental materials to characterize the differentially expressed genes (DEGs) and metabolic pathways in response to MeJA. The results indicate that after treatment with 200 µM of MeJA, the damage in the mutants lox-1 and lox-2 was more serious than in the overexpressing lines L4 and L6, with more significant leaf wilting, yellowing, and oxidative damage in lox-1 and lox-2. Exogenous application of MeJA induced H2O2 production and POD activity but reduced CAT activity in the lox mutants. Transcriptome analysis revealed 10,238 DEGs in six libraries of normal-growing groups (cR108, cL4, and clox1) and MeJA-treated groups (R108, L4, and lox1). GO and KEGG functional enrichment analysis demonstrated that under normal growth conditions, the DEGs between the cL4 vs. cR108 and the clox-1 vs. cR108 groups were primarily enriched in signaling pathways such as plant–pathogen interactions, flavonoid biosynthesis, plant hormone signal transduction, the MAPK signaling pathway, and glutathione metabolism. The DEGs of the R108 vs. cR108 and L4 vs. cL4 groups after MeJA treatment were mainly enriched in glutathione metabolism, phenylpropanoid biosynthesis, the MAPK signaling pathway, circadian rhythm, and α-linolenic acid metabolism. Among them, under normal growth conditions, genes like PTI5, PR1, HSPs, PALs, CAD, CCoAOMT, and CYPs showed significant differences between L4 and the wild type, suggesting that the expression of these genes is impacted by MtLOX24 overexpression. CDPKs, CaMCMLs, IFS, JAZ, and other genes were also significantly different between L4 and the wild type upon MeJA treatment, suggesting that they might be important genes involved in JA signaling. This study provides a reference for the study of the response mechanism of MtLOX24 under MeJA signaling. 
    more » « less
  4. Background: Colorectal cancer (CRC) is a term that refers to the combination of colon and rectal cancer as they are being treated as a single tumor. In CRC, 72% of tumors are colon cancer, while the other 28% represent rectal cancer. CRC is a multifactorial disease caused by both genetic and epigenetic changes in the colon mucosal cells, affecting the oncogenes, DNA repair genes, and tumor suppressor genes. Currently, two DNA methylation-based biomarkers for CRC have received FDA approval: SEPT9, used in blood-based screening tests, and a combination of NDRG4 and BMP3 for stool-based tests. Although DNA methylation biomarkers have been explored in colorectal cancer (CRC), the identification of robust and clinically valuable biomarkers remains a challenge, particularly for early-stage detection and precancerous lesions. Patients often receive diagnoses at the locally advanced stage, which limits the potential utility of current biomarkers in clinical settings. Methods: The datasets used in this study were retrieved from the GEO database, specifically GSE75548 and GSE75546 for rectal cancer and GSE50760 and GSE101764 for colon cancer, summing up to a total of 130 paired samples. These datasets represent expression profiling by array, methylation profiling by genome tiling array, and expression profiling by high-throughput sequencing and include rectal and colon cancer samples paired with adjacent normal tissue samples. Differential analysis was used to identify differentially methylated CPG sites (DMCs) and identify differentially expressed genes (DEGs). Results: From the integration of DMCs with DEGs in colorectal cancer, we identified 150 candidates for methylation-regulated genes (MRGs) with two genes common across all cohorts (GNG7 and PDX1) highlighted as candidate biomarkers in CRC. The functional enrichment analysis and protein–protein interactions (PPIs) identified relevant pathways involved in CRC, including the Wnt signaling pathway, extracellular matrix (ECM) organization, among other enriched pathways. Conclusions: Our findings show the strength of our in silco computational approach in jointly identifying methylation-regulated biomarkers for colon cancer and highlight several genes and pathways as biomarker candidates for further investigations. 
    more » « less
  5. Abstract BackgroundNeuronal polarity and synaptic connectivity are compromised in Alzheimer’s disease (AD) and other tauopathies. The axon initial segment (AIS) is a key structure for regulating polarity and functions of neurons. It occupies the first 20‐60 µm of the axon, comprises a diffusion barrier that segregates axon‐enriched from somatodendritic‐enriched molecules, and has a high concentration of voltage‐gated ion channels that generate action potentials. Extracellular amyloid‐β oligomers compromise AIS integrity. However, effects on the AIS of toxic tau species, including extracellular oligomers (xcTauOs) that spread tau pathology from neuron to neuron by a prion‐like process, whereas unknown. Therefore, we wanted to test the hypothesis that AIS structure is sensitive to xcTauOs. MethodPrimary cortical neurons derived from either wild type (WT), or tau knockout (KO) mice were exposed to xcTauOs or vehicle. Quantitative western blotting and immunofluorescence microscopy with an antibody against the AIS‐enriched protein TRIM46 was used to monitor effects on the AIS. The same methods were also used to compare TRIM46 and two other AIS proteins, ankyrin‐G and neurofascin‐186 in human hippocampal tissue obtained from AD and age‐matched non‐AD donors. ResultIn cultured WT, but not TKO neurons, xcTauOs cause a trend toward AIS shortening and reduce the concentration of the resident AIS protein, TRIM46, without affecting total TRIM46 levels. Lentiviral‐driven human tau expression in tau KO neurons rescues TRIM46 sensitivity to xcTauOs. In human AD hippocampus, AIS length and TRIM46 concentration within the AIS are reduced in neurons containing neurofibrillary tangles (NFTs), without affecting the overall protein levels of multiple resident AIS proteins. ConclusionThese collective findings demonstrate that in cultured neurons, xcTauOs cause partial AIS damage by a mechanism dependent on intracellular tau, thereby raising the possibility that AIS reduction in AD is caused by xcTauOs working in concert with endogenous neuronal tau. 
    more » « less