skip to main content

Title: Propagating sample variance uncertainties in redshift calibration: simulations, theory, and application to the COSMOS2015 data
ABSTRACT Cosmological analyses of galaxy surveys rely on knowledge of the redshift distribution of their galaxy sample. This is usually derived from a spectroscopic and/or many-band photometric calibrator survey of a small patch of sky. The uncertainties in the redshift distribution of the calibrator sample include a contribution from shot noise, or Poisson sampling errors, but, given the small volume they probe, they are dominated by sample variance introduced by large-scale structures. Redshift uncertainties have been shown to constitute one of the leading contributions to systematic uncertainties in cosmological inferences from weak lensing and galaxy clustering, and hence they must be propagated through the analyses. In this work, we study the effects of sample variance on small-area redshift surveys, from theory to simulations to the COSMOS2015 data set. We present a three-step Dirichlet method of resampling a given survey-based redshift calibration distribution to enable the propagation of both shot noise and sample variance uncertainties. The method can accommodate different levels of prior confidence on different redshift sources. This method can be applied to any calibration sample with known redshifts and phenotypes (i.e. cells in a self-organizing map, or some other way of discretizing photometric space), and provides a simple way of more » propagating prior redshift uncertainties into cosmological analyses. As a worked example, we apply the full scheme to the COSMOS2015 data set, for which we also present a new, principled SOM algorithm designed to handle noisy photometric data. We make available a catalogue of the resulting resamplings of the COSMOS2015 galaxies. « less
Authors:
; ; ;
Award ID(s):
2009210
Publication Date:
NSF-PAR ID:
10288833
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
498
Issue:
2
Page Range or eLocation-ID:
2984 to 2999
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Photometric galaxy surveys constitute a powerful cosmological probe but rely on the accurate characterization of their redshift distributions using only broad-band imaging, and can be very sensitive to incomplete or biased priors used for redshift calibration. A hierarchical Bayesian model has recently been developed to estimate those from the robust combination of prior information, photometry of single galaxies, and the information contained in the galaxy clustering against a well-characterized tracer population. In this work, we extend the method so that it can be applied to real data, developing some necessary new extensions to it, especially in the treatment of galaxy clustering information, and we test it on realistic simulations. After marginalizing over the mapping between the clustering estimator and the actual density distribution of the sample galaxies, and using prior information from a small patch of the survey, we find the incorporation of clustering information with photo-z’s tightens the redshift posteriors and overcomes biases in the prior that mimic those happening in spectroscopic samples. The method presented here uses all the information at hand to reduce prior biases and incompleteness. Even in cases where we artificially bias the spectroscopic sample to induce a shift in mean redshift of $\Deltamore »\bar{z} \approx 0.05,$ the final biases in the posterior are $\Delta \bar{z} \lesssim 0.003.$ This robustness to flaws in the redshift prior or training samples would constitute a milestone for the control of redshift systematic uncertainties in future weak lensing analyses.« less
  2. We measured the cross-correlation between galaxy weak lensing data from the Kilo Degree Survey (KiDS-1000, DR4) and cosmic microwave background (CMB) lensing data from the Atacama Cosmology Telescope (ACT, DR4) and the Planck Legacy survey. We used two samples of source galaxies, selected with photometric redshifts, (0.1 <  z B  < 1.2) and (1.2 <  z B  < 2), which produce a combined detection significance of the CMB lensing and weak galaxy lensing cross-spectrum of 7.7 σ . With the lower redshift galaxy sample, for which the cross-correlation was detected at a significance of 5.3 σ , we present joint cosmological constraints on the matter density parameter, Ω m , and the matter fluctuation amplitude parameter, σ 8 , marginalising over three nuisance parameters that model our uncertainty in the redshift and shear calibration as well as the intrinsic alignment of galaxies. We find our measurement to be consistent with the best-fitting flat ΛCDM cosmological models from both Planck and KiDS-1000. We demonstrate the capacity of CMB weak lensing cross-correlations to set constraints on either the redshift or shear calibration by analysing a previously unused high-redshift KiDS galaxy sample (1.2 <  z B  < 2), with the cross-correlation detected at a significance of 7 σ .more »This analysis provides an independent assessment for the accuracy of redshift measurements in a regime that is challenging to calibrate directly owing to known incompleteness in spectroscopic surveys.« less
  3. ABSTRACT As the statistical power of galaxy weak lensing reaches per cent level precision, large, realistic, and robust simulations are required to calibrate observational systematics, especially given the increased importance of object blending as survey depths increase. To capture the coupled effects of blending in both shear and photometric redshift calibration, we define the effective redshift distribution for lensing, nγ(z), and describe how to estimate it using image simulations. We use an extensive suite of tailored image simulations to characterize the performance of the shear estimation pipeline applied to the Dark Energy Survey (DES) Year 3 data set. We describe the multiband, multi-epoch simulations, and demonstrate their high level of realism through comparisons to the real DES data. We isolate the effects that generate shear calibration biases by running variations on our fiducial simulation, and find that blending-related effects are the dominant contribution to the mean multiplicative bias of approximately $-2{{\ \rm per\ cent}}$. By generating simulations with input shear signals that vary with redshift, we calibrate biases in our estimation of the effective redshift distribution, and demonstrate the importance of this approach when blending is present. We provide corrected effective redshift distributions that incorporate statistical and systematic uncertainties, ready for usemore »in DES Year 3 weak lensing analyses.« less
  4. ABSTRACT We present the calibration of the Dark Energy Survey Year 3 (DES Y3) weak lensing (WL) source galaxy redshift distributions n(z) from clustering measurements. In particular, we cross-correlate the WL source galaxies sample with redMaGiC galaxies (luminous red galaxies with secure photometric redshifts) and a spectroscopic sample from BOSS/eBOSS to estimate the redshift distribution of the DES sources sample. Two distinct methods for using the clustering statistics are described. The first uses the clustering information independently to estimate the mean redshift of the source galaxies within a redshift window, as done in the DES Y1 analysis. The second method establishes a likelihood of the clustering data as a function of n(z), which can be incorporated into schemes for generating samples of n(z) subject to combined clustering and photometric constraints. Both methods incorporate marginalization over various astrophysical systematics, including magnification and redshift-dependent galaxy-matter bias. We characterize the uncertainties of the methods in simulations; the first method recovers the mean z of tomographic bins to RMS (precision) of ∼0.014. Use of the second method is shown to vastly improve the accuracy of the shape of n(z) derived from photometric data. The two methods are then applied to the DES Y3 data.
  5. ABSTRACT Cosmological information from weak lensing surveys is maximized by sorting source galaxies into tomographic redshift subsamples. Any uncertainties on these redshift distributions must be correctly propagated into the cosmological results. We present hyperrank, a new method for marginalizing over redshift distribution uncertainties, using discrete samples from the space of all possible redshift distributions, improving over simple parametrized models. In hyperrank, the set of proposed redshift distributions is ranked according to a small (between one and four) number of summary values, which are then sampled, along with other nuisance parameters and cosmological parameters in the Monte Carlo chain used for inference. This approach can be regarded as a general method for marginalizing over discrete realizations of data vector variation with nuisance parameters, which can consequently be sampled separately from the main parameters of interest, allowing for increased computational efficiency. We focus on the case of weak lensing cosmic shear analyses and demonstrate our method using simulations made for the Dark Energy Survey (DES). We show that the method can correctly and efficiently marginalize over a wide range of models for the redshift distribution uncertainty. Finally, we compare hyperrank to the common mean-shifting method of marginalizing over redshift uncertainty, validating thatmore »this simpler model is sufficient for use in the DES Year 3 cosmology results presented in companion papers.« less