This content will become publicly available on December 8, 2022
- Award ID(s):
- 1753174
- Publication Date:
- NSF-PAR ID:
- 10332363
- Journal Name:
- Soft Matter
- Volume:
- 17
- Issue:
- 47
- Page Range or eLocation-ID:
- 10649 to 10663
- ISSN:
- 1744-683X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Intrinsically disordered proteins (IDPs) fold upon binding to select/recruit multiple partners, morph around the partner's structure, and exhibit allostery. However, we do not know whether these properties emerge passively from disorder, or rather are encoded into the IDP's folding mechanisms. A main reason for this gap is the lack of suitable methods to dissect the energetics of IDP conformational landscapes without partners. Here we introduce such an approach that we term molecular LEGO, and apply it to NCBD, a helical, molten globule–like IDP, as proof of concept. The approach entails the experimental and computational characterization of the protein, its separatemore »
-
Membrane bending is a ubiquitous cellular process that is required for membrane traffic, cell motility, organelle biogenesis, and cell division. Proteins that bind to membranes using specific structural features, such as wedge-like amphipathic helices and crescent-shaped scaffolds, are thought to be the primary drivers of membrane bending. However, many membrane-binding proteins have substantial regions of intrinsic disorder which lack a stable three-dimensional structure. Interestingly, many of these disordered domains have recently been found to form networks stabilized by weak, multivalent contacts, leading to assembly of protein liquid phases on membrane surfaces. Here we ask how membrane-associated protein liquids impact membranemore »
-
Positive-strand RNA viruses universally remodel host intracellular membranes to form membrane-bound viral replication complexes, where viral offspring RNAs are synthesized. In the majority of cases, viral replication proteins are targeted to and play critical roles in the modulation of the designated organelle membranes. Many viral replication proteins do not have transmembrane domains, but contain single or multiple amphipathic alpha-helices. It has been conventionally recognized that these helices serve as an anchor for viral replication protein to be associated with membranes. We report here that a peptide representing the amphipathic α-helix at the N-terminus of the poliovirus 2C protein not onlymore »
-
Oxidative stress causes cellular damage including DNA mutations, protein dysfunction and loss of membrane integrity. Here we discovered TrmB (transcription regulator of mal operon) family proteins (Pfam PF01978) composed of a single winged-helix DNA binding domain (InterPro IPR002831) can function as thiol-based transcriptional regulators of oxidative stress responses. Using the archaeon Haloferax volcanii as a model system, we demonstrate that the TrmB-like OxsR is important for recovery of cells from hypochlorite stress. OxsR is shown to bind specific regions of genomic DNA, particularly during hypochlorite stress. OxsR-bound intergenic regions were found proximal to oxidative stress operons including genes associated withmore »
-
Thiamine pyrophosphate (TPP) riboswitches regulate thiamine metabolism by inhibiting the translation of enzymes essential to thiamine synthesis pathways upon binding to thiamine pyrophosphate in cells across all domains of life. Recent work on the Arabidopsis thaliana TPP riboswitch suggests a multistep TPP binding process involving multiple riboswitch configurational ensembles and Mg 2+ dependence underlies the mechanism of TPP recognition and subsequent transition to the expression-inhibiting state of the aptamer domain followed by changes in the expression platform. However, details of the relationship between TPP riboswitch conformational changes and interactions with TPP and Mg 2+ in the aptamer domain constituting thismore »