skip to main content


Title: An Isolated White Dwarf with a 70 s Spin Period
Abstract

We report the discovery of an isolated white dwarf with a spin period of 70 s. We obtained high-speed photometry of three ultramassive white dwarfs within 100 pc and discovered significant variability in one. SDSS J221141.80+113604.4 is a 1.27M(assuming a CO core) magnetic white dwarf that shows 2.9% brightness variations in the BG40 filter with a 70.32 ± 0.04 s period, becoming the fastest spinning isolated white dwarf currently known. A detailed model atmosphere analysis shows that it has a mixed hydrogen and helium atmosphere with a dipole field strength ofBd= 15 MG. Given its large mass, fast rotation, strong magnetic field, unusual atmospheric composition, and relatively large tangential velocity for its cooling age, J2211+1136 displays all of the signatures of a double white dwarf merger remnant. Long-term monitoring of the spin evolution of J2211+1136 and other fast-spinning isolated white dwarfs opens a new discovery space for substellar and planetary mass companions around white dwarfs. In addition, the discovery of such fast rotators outside of the ZZ Ceti instability strip suggests that some should also exist within the strip. Hence, some of the monoperiodic variables found within the instability strip may be fast-spinning white dwarfs impersonating ZZ Ceti pulsators.

 
more » « less
Award ID(s):
1906379
NSF-PAR ID:
10484950
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
923
Issue:
1
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L6
Size(s):
["Article No. L6"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Ultra-massive white dwarf stars are currently being discovered at a considerable rate, thanks to surveys such as the Gaia space mission. These dense and compact stellar remnants likely play a major role in Type Ia supernova explosions. It is possible to probe the interiors of ultra-massive white dwarfs through asteroseismology. In the case of the most massive white dwarfs, general relativity could affect their structure and pulsations substantially. In this work, we present results of relativistic pulsation calculations employing relativistic ultra-massive ONe-core white dwarf models with hydrogen-rich atmospheres and masses ranging from 1.29 to $1.369 \ \mathrm{M}_{\odot }$ with the aim of assessing the impact of general relativity on the adiabatic gravity (g)-mode period spectrum of very high mass ZZ Ceti stars. Employing the relativistic Cowling approximation for the pulsation analysis, we find that the critical buoyancy (Brunt–Väisälä) and acoustic (Lamb) frequencies are larger for the relativistic case, compared to the Newtonian case, due to the relativistic white dwarf models having smaller radii and higher gravities for a fixed stellar mass. In addition, the g-mode periods are shorter in the relativistic case than those in the Newtonian computations, with relative differences of up to ∼$50$ per cent for the highest mass models ($1.369 \ \mathrm{M}_{\odot }$) and for effective temperatures typical of the ZZ Ceti instability strip. Hence, the effects of general relativity on the structure, evolution, and pulsations of white dwarfs with masses larger than ∼$1.29 \ \mathrm{M}_{\odot }$ cannot be ignored in the asteroseismological analysis of ultra-massive ZZ Ceti stars.

     
    more » « less
  2. Abstract

    The Kepler and K2 missions discovered multiple ZZ Ceti white dwarf pulsators that exhibit recurrent outbursts. These outbursting white dwarfs are near the red edge of the ZZ Ceti instability strip, suggesting that the phenomenon is physically related to the cessation of pulsations. We present multi-day ground-based monitoring of the poorly studied red-edge ZZ Ceti pulsator PG 1541+651. We do not detect any outbursts in our data. We do find that this pulsator has a very rich and time-variable spectrum of modes in its periodogram. The white dwarf lies in the northern continuous viewing zone of TESS; therefore, it has extensive archival light curves ripe for a detailed asteroseismic analysis of this star.

     
    more » « less
  3. ABSTRACT

    Recent surveys of close white dwarf binaries as well as single white dwarfs have provided evidence for the late appearance of magnetic fields in white dwarfs, and a possible generation mechanism, a crystallization and rotation-driven dynamo has been suggested. A key prediction of this dynamo is that magnetic white dwarfs rotate, at least on average, faster than their non-magnetic counterparts and/or that the magnetic field strength increases with rotation. Here we present rotation periods of ten white dwarfs within 40 pc measured using photometric variations. Eight of the light curves come from TESS observations and are thus not biased towards short periods, in contrast to most period estimates that have been reported previously in the literature. These TESS spin periods are indeed systematically shorter than those of non-magnetic white dwarfs. This means that the crystallization and rotation-driven dynamo could be responsible for a fraction of the magnetic fields in white dwarfs. However, the full sample of magnetic white dwarfs also contains slowly rotating strongly magnetic white dwarfs which indicates that another mechanism that leads to the late appearance of magnetic white dwarfs might be at work, either in addition to or instead of the dynamo. The fast-spinning and massive magnetic white dwarfs that appear in the literature form a small fraction of magnetic white dwarfs, and probably result from a channel related to white dwarf mergers.

     
    more » « less
  4. ABSTRACT

    We report the discovery of two apparently isolated stellar remnants that exhibit rotationally modulated magnetic Balmer emission, adding to the emerging DAHe class of white dwarf stars. While the previously discovered members of this class show Zeeman-split triplet emission features corresponding to single magnetic field strengths, these two new objects exhibit significant fluctuations in their apparent magnetic field strengths with variability phase. The Zeeman-split hydrogen emission lines in LP 705−64 broaden from 9.4 to 22.2 MG over an apparent spin period of 72.629 min. Similarly, WD J143019.29−562358.33 varies from 5.8  to 8.9 MG over its apparent 86.394 min rotation period. This brings the DAHe class of white dwarfs to at least five objects, all with effective temperatures within 500 K of 8000 K and masses ranging from $0.65\,\,{\text{to}}\,\,0.83\, {\rm M}_{\odot }$.

     
    more » « less
  5. ABSTRACT

    G 29 − 38 (TIC 422526868) is one of the brightest (V = 13.1) and closest (d = 17.51 pc) pulsating white dwarfs with a hydrogen-rich atmosphere (DAV/ZZ Ceti class). It was observed by the TESS spacecraft in sectors 42 and 56. The atmosphere of G 29 − 38 is polluted by heavy elements that are expected to sink out of visible layers on short time-scales. The photometric TESS data set spans ∼51 d in total, and from this, we identified 56 significant pulsation frequencies, that include rotational frequency multiplets. In addition, we identified 30 combination frequencies in each sector. The oscillation frequencies that we found are associated with g-mode pulsations, with periods spanning from ∼ 260 to ∼ 1400 s. We identified rotational frequency triplets with a mean separation δνℓ = 1 of 4.67 μHz and a quintuplet with a mean separation δνℓ = 2 of 6.67 μHz, from which we estimated a rotation period of about 1.35 ± 0.1 d. We determined a constant period spacing of 41.20 s for ℓ = 1 modes and 22.58 s for ℓ = 2 modes. We performed period-to-period fit analyses and found an asteroseismological model with M⋆/M⊙ = 0.632 ± 0.03, $T_{\rm eff}=11\, 635\pm 178$ K, and log g = 8.048 ± 0.005 (with a hydrogen envelope mass of MH ∼ 5.6 × 10−5M⋆), in good agreement with the values derived from spectroscopy. We obtained an asteroseismic distance of 17.54 pc, which is in excellent agreement with that provided by Gaia (17.51 pc).

     
    more » « less