skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Behaviors of Unwarranted Password Identification via Shoulder-Surfing during Mobile Authentication
Password-based mobile user authentication is vulnerable to shoulder-surfing. Despite the increasing research on user password entry behavior and mobile security, there is limited understanding of how an adversary identifies a password through shoulder-surfing during mobile authentication. This study empirically examines the behaviors and strategies of password identification through shoulder-surfing with multiple observation attempts and from different observation distances. The results of analyzing data collected from a user study reveal the strategies and dynamics of password identification behaviors. The findings have implications for enhancing users’ password security and improving the design of mobile authentication methods.  more » « less
Award ID(s):
1917537
PAR ID:
10332429
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE International Conference on Intelligence and Security Informatics (ISI)
Page Range / eLocation ID:
1 to 3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Password-based mobile user authentication is vulnerable to a variety of security threats. Shoulder-surfing is the key to those security threats. Despite a large body of research on password security with mobile devices, existing studies have focused on shaping the security behavior of mobile users by enhancing the strengths of user passwords or by establishing secure password composition policies. There is little understanding of how an attacker actually goes about observing the password of a target user. This study empirically examines attackers’ behaviors in observing passwordbased mobile user authentication sessions across the three observation attempts. It collects data through a longitudinal user study and analyzes the data collected through a system log. The results reveal several behavioral patterns of attackers. The findings suggest that attackers are strategic in deploying attacks of shoulder-surfing. The findings have implications for enhancing users’ password security and refining organizations’ password composition policies. 
    more » « less
  2. Shoulder-surfing studies in the context of mobile user authentication have focused on evaluating the attackers' performance, yet have paid much less attention to their perception of the shoulder-surfing process. Whether and how the shoulder-surfing setting might affect the attackers' perception remains under-explored. This study aims to investigate the perception of shoulder surfers with two different password-based mobile user authentication methods and three different observation angles. Moreover, this work examines the relationship between the attackers' perception and performance in shoulder surfing and the possible moderating effect of the authentication method for the first time. Based on the data collected from an online experiment, our analysis results reveal the effects of authentication methods and observation angles on the attackers' perception in terms of cognitive workload, observation clarity, and repetitive learning advantage. In addition, the results also show that the relationship between the attackers' cognitive workload and performance in shoulder surfing varies with the mobile user authentication method. Our findings not only deepen the understanding of shoulder-surfing attacks from an attacker's perspective, but also facilitate developing countermeasures for shoulder-surfing attacks. 
    more » « less
  3. Pattern unlock is a popular screen unlock scheme that protects the sensitive data and information stored in mobile devices from unauthorized access. However, it is also susceptible to various attacks, including guessing attacks, shoulder surfing attacks, smudge attacks, and side-channel attacks, which can achieve a high success rate in breaking the patterns. In this paper, we propose a new two-factor screen unlock scheme that incorporates surface electromyography (sEMG)-based biometrics with patterns for user authentication. sEMG signals are unique biometric traits suitable for person identification, which can greatly improve the security of pattern unlock. During a screen unlock session, sEMG signals are recorded when the user draws the pattern on the device screen. Time-domain features extracted from the recorded sEMG signals are then used as the input of a one-class classifier to identify the user is legitimate or not. We conducted an experiment involving 10 subjects to test the effectiveness of the proposed scheme. It is shown that the adopted time-domain sEMG features and one-class classifiers achieve good authentication performance in terms of the F 1 score and Half of Total Error Rate (HTER). The results demonstrate that the proposed scheme is a promising solution to enhance the security of pattern unlock. 
    more » « less
  4. To enhance the usability of password authentication, typo-tolerant password authentication schemes permit certain deviations in the user-supplied password, to account for common typographical errors yet still allow the user to successfully log in. In prior work, analysis by Chatterjee et al. demonstrated that typo-tolerance indeed notably improves password usability, yet (surprisingly) does not appear to significantly degrade authentication security. In practice, major web services such as Facebook have employed typo-tolerant password authentication systems. In this paper, we revisit the security impact of typo-tolerant password authentication. We observe that the existing security analysis of such systems considers only password spraying attacks. However, this threat model is incomplete, as password authentication systems must also contend with credential stuffing and tweaking attacks. Factoring in these missing attack vectors, we empirically re-evaluate the security impact of password typo-tolerance using password leak datasets, discovering a significantly larger degradation in security. To mitigate this issue, we explore machine learning classifiers that predict when a password's security is likely affected by typo-tolerance. Our resulting models offer various suitable operating points on the functionality-security tradeoff spectrum, ultimately allowing for partial deployment of typo-tolerant password authentication, preserving its functionality for many users while reducing the security risks. 
    more » « less
  5. null (Ed.)
    In the realm of computer security, the username/password standard is becoming increasingly antiquated. Usage of the same username and password across various accounts can leave a user open to potential vulnerabilities. Authentication methods of the future need to maintain the ability to provide secure access without a reduction in speed. Facial recognition technologies are quickly becoming integral parts of user security, allowing for a secondary level of user authentication. Augmenting traditional username and password security with facial biometrics has already seen impressive results; however, studying these techniques is necessary to determine how effective these methods are within various parameters. A Convolutional Neural Network (CNN) is a powerful classification approach which is often used for image identification and verification. Quite recently, CNNs have shown great promise in the area of facial image recognition. The comparative study proposed in this paper offers an in-depth analysis of several state-of-the-art deep learning based-facial recognition technologies, to determine via accuracy and other metrics which of those are most effective. In our study, VGG-16 and VGG-19 showed the highest levels of image recognition accuracy, as well as F1-Score. The most favorable configurations of CNN should be documented as an effective way to potentially augment the current username/password standard by increasing the current method’s security with additional facial biometrics. 
    more » « less