skip to main content


Title: Improved multispecies Dougherty collisions
The Dougherty model Fokker–Planck operator is extended to describe nonlinear full- $f$ (  f is the distribution function) collisions between multiple species in plasmas. Simple relations for cross-species primitive moments are developed which obey conservation laws, and reproduce familiar velocity and temperature relaxation rates. This treatment of multispecies Dougherty collisions, valid for arbitrary mass ratios, avoids unphysical temperatures and satisfies the $H$ -theorem ( H is related to the entropy) unlike an analogous Bhatnagar–Gross–Krook operator. Formulas for both a Cartesian velocity space and a gyroaveraged operator are provided for use in Vlasov as well as long-wavelength gyrokinetic models. We present an algorithm for the discontinuous Galerkin discretization of this operator, and provide results from relaxation and Landau damping benchmarks.  more » « less
Award ID(s):
2019828
NSF-PAR ID:
10332446
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Plasma Physics
Volume:
88
Issue:
3
ISSN:
0022-3778
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The nature and radial evolution of solar wind electrons in the suprathermal energy range are studied. A wave–particle interaction tensor and a Fokker–Planck Coulomb collision operator are introduced into the kinetic transport equation describing electron collisions and resonant interactions with whistler waves. The diffusion tensor includes diagonal and off-diagonal terms, and the Coulomb collision operator applies to arbitrary electron velocities describing collisions with both background protons and electrons. The background proton and electron densities and temperatures are based on previous turbulence models that mediate the supersonic solar wind. The electron velocity distribution functions and electron heat flux are calculated. Comparison and analysis of the numerical results with analytical solutions and observations in the near-Sun region are made. The numerical results reproduce well the creation of the sunward electron deficit observed in the near-Sun region. The deficit of the electron velocity distribution function below the core Maxwellian fit at low velocities results from Coulomb collisions, and the excess part above the core Maxwellian fit at high velocities is determined by strong wave–particle interactions.

     
    more » « less
  2. Hypervalent iron intermediates have been invoked in the catalytic cycles of many metalloproteins, and thus, it is crucial to understand how the coupling between such species and their environment can impact their chemical and physical properties in such contexts. In this work, we take advantage of the solvent kinetic isotope effect (SKIE) to gain insight into the nonradiative deactivation of electronic excited states of the aqueous ferrate(VI) ion. We observe an exceptionally large SKIE of 9.7 for the nanosecond-scale relaxation of the lowest energy triplet ligand field state to the ground state. Proton inventory studies demonstrate that a single solvent O–H bond is coupled to the ion during deactivation, likely due to the sparse vibrational structure of ferrate(VI). Such a mechanism is consistent with that reported for the deactivation of f–f excited states of aqueous trivalent lanthanides, which exhibit comparably large SKIE values. This phenomenon is ascribed entirely to dissipation of energy into a higher overtone of a solvent acceptor mode, as any impact on the apparent relaxation rate due to a change in solvent viscosity is negligible. 
    more » « less
  3. Abstract

    The Millstone Hill incoherent scatter (IS) radar is used to measure spectra close to perpendicular to the Earth's magnetic field, and the data are fit to three different forward models to estimate ionospheric temperatures. IS spectra measured close to perpendicular to the magnetic field are heavily influenced by Coulomb collisions, and the temperature estimates are sensitive to the collision operator used in the forward model. The standard theoretical model for IS radar spectra treats Coulomb collisions as a velocity independent Brownian motion process. This gives estimates ofTe/Ti < 1 when fitting the measured spectra for aspect angles up to 3.6°, which is a physically unrealistic result. The numerical forward model from Milla and Kudeki (2011,https://doi.org/10.1109/TGRS.2010.2057253) incorporates single‐particle simulations of velocity‐dependent Coulomb collisions into a linear framework, and when applied to the Millstone data, it predicts the sameTe/Tiratios as the Brownian theory. The new approach is a nonlinear particle‐in‐cell (PIC) code that includes velocity‐dependent Coulomb collisions which produce significantly more collisional and nonlinear Landau damping of the measured ion‐acoustic wave than the other forward models. When applied to the radar data, the increased damping in the PIC simulations will result in more physically realistic estimates ofTe/Ti. This new approach has the greatest impact for the largest measured ionospheric densities and the lowest radar frequencies. The new approach should enable IS radars to obtain accurate measurements of plasma temperatures at times and locations where they currently cannot.

     
    more » « less
  4. ABSTRACT Using a quantum-mechanical close-coupling method, we calculate cross-sections for fine-structure excitation and relaxation of Si and S atoms in collisions with atomic hydrogen. Rate coefficients are calculated over a range of temperatures for astrophysical applications. We determine the temperature-dependent critical densities for the relaxation of Si and S in collisions with H and compare these to the critical densities for collisions with electrons. The present calculations should be useful in modelling environments exhibiting the [S i] 25 μm and [S i] 57 μm far-infrared emission lines or where cooling of S and Si by collisions with H is of interest. 
    more » « less
  5. Abstract

    We use medium- and high-resolution spectroscopy of close pairs of quasars to analyze the circumgalactic medium (CGM) surrounding 32 damped Lyαabsorption systems (DLAs). The primary quasar sightline in each pair probes an intervening DLA in the redshift range 1.6 <zabs< 3.5, such that the secondary sightline probes absorption from Lyαand a large suite of metal-line transitions (including Oi, Cii, Civ, Siii, and Siiv) in the DLA host galaxy’s CGM at transverse distances 24 kpc ≤R≤ 284 kpc. Analysis of Lyαin the CGM sightlines shows an anticorrelation betweenRand Hicolumn density (NHI) with 99.8% confidence, similar to that observed around luminous galaxies. The incidences of Ciiand SiiiwithN> 1013cm−2within 100 kpc of DLAs are larger by 2σthan those measured in the CGM of Lyman break galaxies (Cf(NCII) > 0.89 andCf(NSiII)=0.750.17+0.12). Metallicity constraints derived from ionic ratios for nine CGM systems with negligible ionization corrections andNHI> 1018.5cm−2show a significant degree of scatter (with metallicities/limits across the range2.06logZ/Z0.75), suggesting inhomogeneity in the metal distribution in these environments. Velocity widths of Civλ1548 and low-ionization metal species in the DLA versus CGM sightlines are strongly (>2σ) correlated, suggesting that they trace the potential well of the host halo overR≲ 300 kpc scales. At the same time, velocity centroids for Civλ1548 differ in DLA versus CGM sightlines by >100 km s−1for ∼50% of velocity components, but few components have velocities that would exceed the escape velocity assuming dark matter host halos of ≥1012M.

     
    more » « less