skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Weak Alfvénic turbulence in relativistic plasmas. Part 1. Dynamical equations and basic dynamics of interacting resonant triads
Alfvén wave collisions are the primary building blocks of the non-relativistic turbulence that permeates the heliosphere and low- to moderate-energy astrophysical systems. However, many astrophysical systems such as gamma-ray bursts, pulsar and magnetar magnetospheres and active galactic nuclei have relativistic flows or energy densities. To better understand these high-energy systems, we derive reduced relativistic magnetohydrodynamics equations and employ them to examine weak Alfvénic turbulence, dominated by three-wave interactions, in reduced relativistic magnetohydrodynamics, including the force-free, infinitely magnetized limit. We compare both numerical and analytical solutions to demonstrate that many of the findings from non-relativistic weak turbulence are retained in relativistic systems. But, an important distinction in the relativistic limit is the inapplicability of a formally incompressible limit, i.e. there exists finite coupling to the compressible fast mode regardless of the strength of the magnetic field. Since fast modes can propagate across field lines, this mechanism provides a route for energy to escape strongly magnetized systems, e.g. magnetar magnetospheres. However, we find that the fast-Alfvén coupling is diminished in the limit of oblique propagation.  more » « less
Award ID(s):
2019828 1909458
PAR ID:
10332450
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Plasma Physics
Volume:
87
Issue:
6
ISSN:
0022-3778
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Alfvén waves as excited in black hole accretion disks and neutron star magnetospheres are the building blocks of turbulence in relativistic, magnetized plasmas. A large reservoir of magnetic energy is available in these systems, such that the plasma can be heated significantly even in the weak turbulence regime. We perform high-resolution three-dimensional simulations of counter-propagating Alfvén waves, showing that an $$E_{B_{\perp }}(k_{\perp }) \propto k_{\perp }^{-2}$$ energy spectrum develops as a result of the weak turbulence cascade in relativistic magnetohydrodynamics and its infinitely magnetized (force-free) limit. The plasma turbulence ubiquitously generates current sheets, which act as locations where magnetic energy dissipates. We show that current sheets form as a natural result of nonlinear interactions between counter-propagating Alfvén waves. These current sheets form owing to the compression of elongated eddies, driven by the shear induced by growing higher-order modes, and undergo a thinning process until they break-up into small-scale turbulent structures. We explore the formation of current sheets both in overlapping waves and in localized wave packet collisions. The relativistic interaction of localized Alfvén waves induces both Alfvén waves and fast waves, and efficiently mediates the conversion and dissipation of electromagnetic energy in astrophysical systems. Plasma energization through reconnection in current sheets emerging during the interaction of Alfvén waves can potentially explain X-ray emission in black hole accretion coronae and neutron star magnetospheres. 
    more » « less
  2. Abstract The origins of the various outbursts of hard X-rays from magnetars (highly magnetized neutron stars) are still unknown. We identify instabilities in relativistic magnetospheres that can explain a range of X-ray flare luminosities. Crustal surface motions can twist the magnetar magnetosphere by shifting the frozen-in footpoints of magnetic field lines in current-carrying flux bundles. Axisymmetric (2D) magnetospheres exhibit strong eruptive dynamics, i.e., catastrophic lateral instabilities triggered by a critical footpoint displacement ofψcrit≳π. In contrast, our new three-dimensional (3D) twist models with finite surface extension capture important non-axisymmetric dynamics of twisted force-free flux bundles in dipolar magnetospheres. Besides the well-established global eruption resulting (as in 2D) from lateral instabilities, such 3D structures can develop helical, kink-like dynamics, and dissipate energy locally (confined eruptions). Up to 25% of the induced twist energy is dissipated and available to power X-ray flares in powerful global eruptions, with most of our models showing an energy release in the range of the most common X-ray outbursts, ≲1043erg. Such events occur when significant energy builds up while deeply buried in the dipole magnetosphere. Less energetic outbursts likely precede powerful flares, due to intermittent instabilities and confined eruptions of a continuously twisting flux tube. Upon reaching a critical state, global eruptions produce the necessary Poynting-flux-dominated outflows required by models prescribing the fast radio burst production in the magnetar wind—for example, via relativistic magnetic reconnection or shocks. 
    more » « less
  3. Abstract In a strongly magnetized, magnetically dominated relativistic plasma, Alfvénic turbulence can extend to scales much smaller than the particle inertial scales. It leads to an energy cascade somewhat analogous to inertial- or kinetic-Alfvén turbulent cascades existing in nonrelativistic space and astrophysical plasmas. Based on phenomenological modeling and particle-in-cell numerical simulations, we propose that the energy spectrum of such relativistic kinetic-scale Alfvénic turbulence is close tok−3or slightly steeper than that due to intermittency corrections or Landau damping. We note the analogy of this spectrum with the Kraichnan spectrum corresponding to the enstrophy cascade in 2D incompressible fluid turbulence. Such turbulence strongly energizes particles in the direction parallel to the background magnetic field, leading to nearly one-dimensional particle momentum distributions. We find that these distributions have universal log-normal statistics. 
    more » « less
  4. Abstract We present high-resolution 2D and 3D simulations of magnetized decaying turbulence in relativistic, resistive magnetohydrodynamics. The simulations show dynamic formation of large-scale intermittent long-lived current sheets being disrupted into plasmoid chains by the tearing instability. These current sheets are locations of enhanced magnetic-field dissipation and heating of the plasma. We find magnetic energy spectra ∝k−3/2, together with strongly pronounced dynamic alignment of Elsässer fields and of velocity and magnetic fields, for strong guide-field turbulence, whereas we retrieve spectra ∝k−5/3for the case of a weak guide-field. 
    more » « less
  5. ABSTRACT Turbulent high-energy astrophysical systems often feature asymmetric energy injection: for instance, Alfvén waves propagating from an accretion disc into its corona. Such systems are ‘imbalanced’: the energy fluxes parallel and antiparallel to the large-scale magnetic field are unequal. In the past, numerical studies of imbalanced turbulence have focused on the magnetohydrodynamic regime. In this study, we investigate externally driven imbalanced turbulence in a collision-less, ultrarelativistically hot, magnetized pair plasma using 3D particle-in-cell (PIC) simulations. We find that the injected electromagnetic momentum efficiently converts into plasma momentum, resulting in net motion along the background magnetic field with speeds up to a significant fraction of lightspeed. This discovery has important implications for the launching of accretion disc winds. We also find that although particle acceleration in imbalanced turbulence operates on a slower time-scale than in balanced turbulence, it ultimately produces a power-law energy distribution similar to balanced turbulence. Our results have ramifications for black hole accretion disc coronae, winds, and jets. 
    more » « less