skip to main content

This content will become publicly available on April 1, 2023

Title: Structure Meets Sequences: Predicting Network of Co-evolving Sequences
Co-evolving sequences are ubiquitous in a variety of applications, where different sequences are often inherently inter-connected with each other. We refer to such sequences, together with their inherent connections modeled as a structured network, as network of co-evolving sequences (NoCES). Typical NoCES applications in- clude road traffic monitoring, company revenue prediction, motion capture, etc. To date, it remains a daunting challenge to accurately model NoCES due to the coupling between network structure and sequences. In this paper, we propose to modeling NoCES with the aim of simultaneously capturing both the dynamics and the inter- play between network structure and sequences. Specifically, we propose a joint learning framework to alternatively update the network representations and sequence representations as the se- quences evolve over time. A unique feature of our framework lies in that it can deal with the case when there are co-evolving sequences on both network nodes and edges. Experimental evaluations on four real datasets demonstrate that the proposed approach (1) out- performs the existing competitors in terms of prediction accuracy, and (2) scales linearly w.r.t. the sequence length and the network size.
Authors:
; ; ; ;
Award ID(s):
1939725 1947135 2134079
Publication Date:
NSF-PAR ID:
10332503
Journal Name:
WSDM
Page Range or eLocation-ID:
1090 to 1098
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation Alternative splicing generates multiple isoforms from a single gene, greatly increasing the functional diversity of a genome. Although gene functions have been well studied, little is known about the specific functions of isoforms, making accurate prediction of isoform functions highly desirable. However, the existing approaches to predicting isoform functions are far from satisfactory due to at least two reasons: (i) unlike genes, isoform-level functional annotations are scarce. (ii) The information of isoform functions is concealed in various types of data including isoform sequences, co-expression relationship among isoforms, etc. Results In this study, we present a novel approach, DIFFUSEmore »(Deep learning-based prediction of IsoForm FUnctions from Sequences and Expression), to predict isoform functions. To integrate various types of data, our approach adopts a hybrid framework by first using a deep neural network (DNN) to predict the functions of isoforms from their genomic sequences and then refining the prediction using a conditional random field (CRF) based on co-expression relationship. To overcome the lack of isoform-level ground truth labels, we further propose an iterative semi-supervised learning algorithm to train both the DNN and CRF together. Our extensive computational experiments demonstrate that DIFFUSE could effectively predict the functions of isoforms and genes. It achieves an average area under the receiver operating characteristics curve of 0.840 and area under the precision–recall curve of 0.581 over 4184 GO functional categories, which are significantly higher than the state-of-the-art methods. We further validate the prediction results by analyzing the correlation between functional similarity, sequence similarity, expression similarity and structural similarity, as well as the consistency between the predicted functions and some well-studied functional features of isoform sequences. Availability and implementation https://github.com/haochenucr/DIFFUSE. Supplementary information Supplementary data are available at Bioinformatics online.« less
  2. According to the National Academies, a week long forecast of velocity, vertical structure, and duration of the Loop Current (LC) and its eddies at a given location is a critical step toward understanding their effects on the gulf ecosystems as well as toward anticipating and mitigating the outcomes of anthropogenic and natural disasters in the Gulf of Mexico (GoM). However, creating such a forecast has remained a challenging problem since LC behavior is dominated by dynamic processes across multiple time and spatial scales not resolved at once by conventional numerical models. In this paper, building on the foundation of spatiotemporalmore »predictive learning in video prediction, we develop a physics informed deep learning based prediction model called—Physics-informed Tensor-train ConvLSTM (PITT-ConvLSTM)—for forecasting 3D geo-spatiotemporal sequences. Specifically, we propose (1) a novel 4D higher-order recurrent neural network with empirical orthogonal function analysis to capture the hidden uncorrelated patterns of each hierarchy, (2) a convolutional tensor-train decomposition to capture higher-order space-time correlations, and (3) a mechanism that incorporates prior physics from domain experts by informing the learning in latent space. The advantage of our proposed approach is clear: constrained by the law of physics, the prediction model simultaneously learns good representations for frame dependencies (both short-term and long-term high-level dependency) and inter-hierarchical relations within each time frame. Experiments on geo-spatiotemporal data collected from the GoM demonstrate that the PITT-ConvLSTM model can successfully forecast the volumetric velocity of the LC and its eddies for a period greater than 1 week.« less
  3. Martelli, Pier Luigi (Ed.)
    Abstract Motivation Accurate prediction of residue-residue distances is important for protein structure prediction. We developed several protein distance predictors based on a deep learning distance prediction method and blindly tested them in the 14th Critical Assessment of Protein Structure Prediction (CASP14). The prediction method uses deep residual neural networks with the channel-wise attention mechanism to classify the distance between every two residues into multiple distance intervals. The input features for the deep learning method include co-evolutionary features as well as other sequence-based features derived from multiple sequence alignments (MSAs). Three alignment methods are used with multiple protein sequence/profile databases tomore »generate MSAs for input feature generation. Based on different configurations and training strategies of the deep learning method, five MULTICOM distance predictors were created to participate in the CASP14 experiment. Results Benchmarked on 37 hard CASP14 domains, the best performing MULTICOM predictor is ranked 5th out of 30 automated CASP14 distance prediction servers in terms of precision of top L/5 long-range contact predictions (i.e. classifying distances between two residues into two categories: in contact (< 8 Angstrom) and not in contact otherwise) and performs better than the best CASP13 distance prediction method. The best performing MULTICOM predictor is also ranked 6th among automated server predictors in classifying inter-residue distances into 10 distance intervals defined by CASP14 according to the precision of distance classification. The results show that the quality and depth of MSAs depend on alignment methods and sequence databases and have a significant impact on the accuracy of distance prediction. Using larger training datasets and multiple complementary features improves prediction accuracy. However, the number of effective sequences in MSAs is only a weak indicator of the quality of MSAs and the accuracy of predicted distance maps. In contrast, there is a strong correlation between the accuracy of contact/distance predictions and the average probability of the predicted contacts, which can therefore be more effectively used to estimate the confidence of distance predictions and select predicted distance maps. Availability The software package, source code, and data of DeepDist2 are freely available at https://github.com/multicom-toolbox/deepdist and https://zenodo.org/record/4712084#.YIIM13VKhQM.« less
  4. Citations of scientific papers and patents reveal the knowledge flow and usually serve as the metric for evaluating their novelty and impacts in the field. Citation Forecasting thus has various applications in the real world. Existing works on citation forecasting typically exploit the sequential properties of citation events, without exploring the citation network. In this paper, we propose to explore both the citation network and the related citation event sequences which provide valuable information for future citation forecasting. We propose a novel Citation Network and Event Sequence (CINES) Model to encode signals in the citation network and related citation eventmore »sequences into various types of embeddings for decoding to the arrivals of future citations. Moreover, we propose a temporal network attention and three alternative designs of bidirectional feature propagation to aggregate the retrospective and prospective aspects of publications in the citation network, coupled with the citation event sequence embeddings learned by a two-level attention mechanism for the citation forecasting. We evaluate our models and baselines on both a U.S. patent dataset and a DBLP dataset. Experimental results show that our models outperform the state-of-the-art methods, i.e., RMTPP, CYAN-RNN, Intensity-RNN, and PC-RNN, reducing the forecasting error by 37.76% - 75.32%.« less
  5. Representation Learning over graph structured data has received significant attention recently due to its ubiquitous applicability. However, most advancements have been made in static graph settings while efforts for jointly learning dynamic of the graph and dynamic on the graph are still in an infant stage. Two fundamental questions arise in learning over dynamic graphs: (i) How to elegantly model dynamical processes over graphs? (ii) How to leverage such a model to effectively encode evolving graph information into low-dimensional representations? We present DyRep - a novel modeling framework for dynamic graphs that posits representation learning as a latent mediation processmore »bridging two observed processes namely -- dynamics of the network (realized as topological evolution) and dynamics on the network (realized as activities between nodes). Concretely, we propose a two-time scale deep temporal point process model that captures the interleaved dynamics of the observed processes. This model is further parameterized by a temporal-attentive representation network that encodes temporally evolving structural information into node representations which in turn drives the nonlinear evolution of the observed graph dynamics. Our unified framework is trained using an efficient unsupervised procedure and has capability to generalize over unseen nodes. We demonstrate that DyRep outperforms state-of-the-art baselines for dynamic link prediction and time prediction tasks and present extensive qualitative insights into our framework.« less