skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DESTINE: Dense Subgraph Detection on Multi-Layered Networks
Dense subgraph detection is a fundamental building block for a va- riety of applications. Most of the existing methods aim to discover dense subgraphs within either a single network or a multi-view network while ignoring the informative node dependencies across multiple layers of networks in a complex system. To date, it largely remains a daunting task to detect dense subgraphs on multi-layered networks. In this paper, we formulate the problem of dense sub- graph detection on multi-layered networks based on cross-layer consistency principle. We further propose a novel algorithm Des- tine based on projected gradient descent with the following ad- vantages. First, armed with the cross-layer dependencies, Destine is able to detect significantly more accurate and meaningful dense subgraphs at each layer. Second, it scales linearly w.r.t. the num- ber of links in the multi-layered network. Extensive experiments demonstrate the efficacy of the proposed Destine algorithm in various cases.  more » « less
Award ID(s):
1939725 1947135
PAR ID:
10332510
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Destine: Dense Subgraph Detection on Multi-Layered Networks
Page Range / eLocation ID:
3558 to 3562
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Network embedding has gained more attentions in recent years. It has been shown that the learned low-dimensional node vector representations could advance a myriad of graph mining tasks such as node classification, community detection, and link prediction. A vast majority of the existing efforts are overwhelmingly devoted to single-layered networks or homogeneous networks with a single type of nodes and node interactions. However, in many real-world applications, a variety of networks could be abstracted and presented in a multilayered fashion. Typical multi-layered networks include critical infrastructure systems, collaboration platforms, social recommender systems, to name a few. Despite the widespread use of multi-layered networks, it remains a daunting task to learn vector representations of different types of nodes due to the bewildering combination of both within-layer connections and cross-layer network dependencies. In this paper, we study a novel problem of multi-layered network embedding. In particular, we propose a principled framework – MANE to model both within-layer connections and cross-layer network dependencies simultaneously in a unified optimization framework for embedding representation learning. Experiments on real-world multi-layered networks corroborate the effectiveness of the proposed framework. 
    more » « less
  2. Multi-layered inter-dependent networks have emerged in a wealth of high-impact application domains. Cross-layer dependency inference, which aims to predict the dependencies between nodes across different layers, plays a pivotal role in such multi-layered network systems. Most, if not all, of existing methods exclusively follow a coupling principle of design and can be categorized into the following two groups, including (1) heterogeneous network embedding based methods (data coupling), and (2) collaborative filtering based methods (module coupling). Despite the favorable achievement, methods of both types are faced with two intricate challenges, including (1) the sparsity challenge where very limited observations of cross-layer dependencies are available, resulting in a deteriorated prediction of missing dependencies, and (2) the dynamic challenge given that the multi-layered network system is constantly evolving over time. In this paper, we first demonstrate that the inability of existing methods to resolve the sparsity challenge roots in the coupling principle from the perspectives of both data coupling and module coupling. Armed with such theoretical analysis, we pursue a new principle where the key idea is to decouple the within-layer connectivity from the observed cross-layer dependencies. Specifically, to tackle the sparsity challenge for static networks, we propose FITO-S, which incorporates a position embedding matrix generated by random walk with restart and the embedding space transformation function. More essentially, the decoupling principle ameliorates the dynamic challenge, which naturally leads to FITO-D, being capable of tracking the inference results in the dynamic setting through incrementally updating the position embedding matrix and fine-tuning the space transformation function. Extensive evaluations on real-world datasets demonstrate the superiority of the proposed framework FITO for cross-layer dependency inference. 
    more » « less
  3. We present a new verification algorithm to efficiently and incrementally verify arbitrarily layered network data planes that are implemented using packet encapsulation. Inspired by work on model checking of pushdown systems for recursive programs, we develop a verification algorithm for networks with packets consisting of stacks of headers. Our algorithm is based on a new technique that lazily “repairs” a decomposed stack of header sets on demand to account for cross-layer dependencies. We demonstrate how to integrate our approach with existing fast incremental data plane verifiers and have implemented our ideas in a tool called KATRA. Evaluating KATRA against an alternative approach based on equipping existing incremental verifiers to emulate finite header stacks, we show that KATRA is between 5x-32x faster for packets with just 2 headers (layers), and that its performance advantage grows with both network size and layering. 
    more » « less
  4. Abstract Smart Grid (SG) research and development has drawn much attention from academia, industry and government due to the great impact it will have on society, economics and the environment. Securing the SG is a considerably significant challenge due the increased dependency on communication networks to assist in physical process control, exposing them to various cyber‐threats. In addition to attacks that change measurement values using False Data Injection (FDI) techniques, attacks on the communication network may disrupt the power system's real‐time operation by intercepting messages, or by flooding the communication channels with unnecessary data. Addressing these attacks requires a cross‐layer approach. In this paper a cross‐layered strategy is presented, called Cross‐Layer Ensemble CorrDet with Adaptive Statistics(CECD‐AS), which integrates the detection of faulty SG measurement data as well as inconsistent network inter‐arrival times and transmission delays for more reliable and accurate anomaly detection and attack interpretation. Numerical results show that CECD‐AS can detect multiple False Data Injections, Denial of Service (DoS) and Man In The Middle (MITM) attacks with a high F1‐score compared to current approaches that only use SG measurement data for detection such as the traditional physics‐based State Estimation, ECD‐AS strategy and other machine learning classification‐based detection schemes. 
    more » « less
  5. We propose a generalized optimization framework for detecting anomalous patterns (subgraphs that are interesting or unexpected) in interdependent networks, such as multi-layer networks, temporal networks, networks of networks, and many others. We frame the problem as a non-convex optimization that has a general nonlinear score function and a set of block-structured and non-convex constraints. We develop an effective, efficient, and parallelizable projection-based algorithm, namely Graph Block-structured Gradient Projection (GBGP), to solve the problem. It is proved that our algorithm 1) runs in nearly-linear time on the network size, and 2) enjoys a theoretical approximation guarantee. Moreover, we demonstrate how our framework can be applied to two very practical applications, and we conduct comprehensive experiments to show the effectiveness and efficiency of our proposed algorithm. 
    more » « less