skip to main content

This content will become publicly available on October 17, 2023

Title: Dissecting Cross-Layer Dependency Inference on Multi-Layered Inter-Dependent Networks
Multi-layered inter-dependent networks have emerged in a wealth of high-impact application domains. Cross-layer dependency inference, which aims to predict the dependencies between nodes across different layers, plays a pivotal role in such multi-layered network systems. Most, if not all, of existing methods exclusively follow a coupling principle of design and can be categorized into the following two groups, including (1) heterogeneous network embedding based methods (data coupling), and (2) collaborative filtering based methods (module coupling). Despite the favorable achievement, methods of both types are faced with two intricate challenges, including (1) the sparsity challenge where very limited observations of cross-layer dependencies are available, resulting in a deteriorated prediction of missing dependencies, and (2) the dynamic challenge given that the multi-layered network system is constantly evolving over time. In this paper, we first demonstrate that the inability of existing methods to resolve the sparsity challenge roots in the coupling principle from the perspectives of both data coupling and module coupling. Armed with such theoretical analysis, we pursue a new principle where the key idea is to decouple the within-layer connectivity from the observed cross-layer dependencies. Specifically, to tackle the sparsity challenge for static networks, we propose FITO-S, which incorporates a position embedding more » matrix generated by random walk with restart and the embedding space transformation function. More essentially, the decoupling principle ameliorates the dynamic challenge, which naturally leads to FITO-D, being capable of tracking the inference results in the dynamic setting through incrementally updating the position embedding matrix and fine-tuning the space transformation function. Extensive evaluations on real-world datasets demonstrate the superiority of the proposed framework FITO for cross-layer dependency inference. « less
Authors:
; ; ; ;
Award ID(s):
2134079 1947135 1939725
Publication Date:
NSF-PAR ID:
10380768
Journal Name:
CIKM
Page Range or eLocation-ID:
2341 to 2351
Sponsoring Org:
National Science Foundation
More Like this
  1. Finding node associations across different networks is the cornerstone behind a wealth of high-impact data mining applications. Traditional approaches are often, explicitly or implicitly, built upon the linearity and/or consistency assumptions. On the other hand, the recent network embedding based methods promise a natural way to handle the non-linearity, yet they could suffer from the disparate node embedding space of different networks. In this paper, we address these limitations and tackle cross-network node associations from a new angle, i.e., cross-network transformation. We ask a generic question: Given two different networks, how can we transform one network to another? We propose an end-to-end model that learns a composition of nonlinear operations so that one network can be transformed to another in a hierarchical manner. The proposed model bears three distinctive advantages. First (composite transformation), it goes beyond the linearity/consistency assumptions and performs the cross-network transformation through a composition of nonlinear computations. Second (representation power), it can learn the transformation of both network structures and node attributes at different resolutions while identifying the cross-network node associations. Third (generality), it can be applied to various tasks, including network alignment, recommendation, cross-layer dependency inference. Extensive experiments on different tasks validate and verify the effectivenessmore »of the proposed model.« less
  2. Dense subgraph detection is a fundamental building block for a va- riety of applications. Most of the existing methods aim to discover dense subgraphs within either a single network or a multi-view network while ignoring the informative node dependencies across multiple layers of networks in a complex system. To date, it largely remains a daunting task to detect dense subgraphs on multi-layered networks. In this paper, we formulate the problem of dense sub- graph detection on multi-layered networks based on cross-layer consistency principle. We further propose a novel algorithm Des- tine based on projected gradient descent with the following ad- vantages. First, armed with the cross-layer dependencies, Destine is able to detect significantly more accurate and meaningful dense subgraphs at each layer. Second, it scales linearly w.r.t. the num- ber of links in the multi-layered network. Extensive experiments demonstrate the efficacy of the proposed Destine algorithm in various cases.
  3. Network embedding has gained more attentions in recent years. It has been shown that the learned low-dimensional node vector representations could advance a myriad of graph mining tasks such as node classification, community detection, and link prediction. A vast majority of the existing efforts are overwhelmingly devoted to single-layered networks or homogeneous networks with a single type of nodes and node interactions. However, in many real-world applications, a variety of networks could be abstracted and presented in a multilayered fashion. Typical multi-layered networks include critical infrastructure systems, collaboration platforms, social recommender systems, to name a few. Despite the widespread use of multi-layered networks, it remains a daunting task to learn vector representations of different types of nodes due to the bewildering combination of both within-layer connections and cross-layer network dependencies. In this paper, we study a novel problem of multi-layered network embedding. In particular, we propose a principled framework – MANE to model both within-layer connections and cross-layer network dependencies simultaneously in a unified optimization framework for embedding representation learning. Experiments on real-world multi-layered networks corroborate the effectiveness of the proposed framework.
  4. Recently, considerable research attention has been paid to graph embedding, a popular approach to construct representations of vertices in latent space. Due to the curse of dimensionality and sparsity in graphical datasets, this approach has become indispensable for machine learning tasks over large networks. The majority of the existing literature has considered this technique under the assumption that the network is static. However, networks in many applications, including social networks, collaboration networks, and recommender systems, nodes, and edges accrue to a growing network as streaming. A small number of very recent results have addressed the problem of embedding for dynamic networks. However, they either rely on knowledge of vertex attributes, su er high-time complexity or need to be re-trained without closed-form expression. Thus the approach of adapting the existing methods designed for static networks or dynamic networks to the streaming environment faces non-trivial technical challenges. These challenges motivate developing new approaches to the problems of streaming graph embedding. In this paper, we propose a new framework that is able to generate latent representations for new vertices with high e ciency and low complexity under speci ed iteration rounds. We formulate a constrained optimiza- tion problem for the modi cation ofmore »the representation resulting from a stream arrival. We show this problem has no closed-form solution and instead develop an online approximation solution. Our solution follows three steps: (1) identify vertices a ected by newly arrived ones, (2) generating latent features for new vertices, and (3) updating the latent features of the most a ected vertices. The new representations are guaranteed to be feasible in the original constrained optimization problem. Meanwhile, the solution only brings about a small change to existing representations and only slightly changes the value of the objective function. Multi-class clas- si cation and clustering on ve real-world networks demonstrate that our model can e ciently update vertex representations and simultaneously achieve comparable or even better performance compared with model retraining.« less
  5. Abstract Motivation

    Protein function prediction, based on the patterns of connection in a protein–protein interaction (or association) network, is perhaps the most studied of the classical, fundamental inference problems for biological networks. A highly successful set of recent approaches use random walk-based low-dimensional embeddings that tend to place functionally similar proteins into coherent spatial regions. However, these approaches lose valuable local graph structure from the network when considering only the embedding. We introduce GLIDER, a method that replaces a protein–protein interaction or association network with a new graph-based similarity network. GLIDER is based on a variant of our previous GLIDE method, which was designed to predict missing links in protein–protein association networks, capturing implicit local and global (i.e. embedding-based) graph properties.

    Results

    GLIDER outperforms competing methods on the task of predicting GO functional labels in cross-validation on a heterogeneous collection of four human protein–protein association networks derived from the 2016 DREAM Disease Module Identification Challenge, and also on three different protein–protein association networks built from the STRING database. We show that this is due to the strong functional enrichment that is present in the local GLIDER neighborhood in multiple different types of protein–protein association networks. Furthermore, we introduce the GLIDER graph neighborhoodmore »as a way for biologists to visualize the local neighborhood of a disease gene. As an application, we look at the local GLIDER neighborhoods of a set of known Parkinson’s Disease GWAS genes, rediscover many genes which have known involvement in Parkinson’s disease pathways, plus suggest some new genes to study.

    Availability and implementation

    All code is publicly available and can be accessed here: https://github.com/kap-devkota/GLIDER.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

    « less