skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Online estimation of DSGE models
Summary This paper illustrates the usefulness of sequential Monte Carlo (SMC) methods in approximating dynamic stochastic general equilibrium (DSGE) model posterior distributions. We show how the tempering schedule can be chosen adaptively, document the accuracy and runtime benefits of generalized data tempering for ‘online’ estimation (that is, re-estimating a model as new data become available), and provide examples of multimodal posteriors that are well captured by SMC methods. We then use the online estimation of the DSGE model to compute pseudo-out-of-sample density forecasts and study the sensitivity of the predictive performance to changes in the prior distribution. We find that making priors less informative (compared with the benchmark priors used in the literature) by increasing the prior variance does not lead to a deterioration of forecast accuracy.  more » « less
Award ID(s):
1851634
PAR ID:
10332538
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Econometrics Journal
Volume:
24
Issue:
1
ISSN:
1368-4221
Page Range / eLocation ID:
C33 to C58
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A catalytic prior distribution is designed to stabilize a high-dimensional “working model” by shrinking it toward a “simplified model.” The shrinkage is achieved by supplementing the observed data with a small amount of “synthetic data” generated from a predictive distribution under the simpler model. We apply this framework to generalized linear models, where we propose various strategies for the specification of a tuning parameter governing the degree of shrinkage and study resultant theoretical properties. In simulations, the resulting posterior estimation using such a catalytic prior outperforms maximum likelihood estimation from the working model and is generally comparable with or superior to existing competitive methods in terms of frequentist prediction accuracy of point estimation and coverage accuracy of interval estimation. The catalytic priors have simple interpretations and are easy to formulate. 
    more » « less
  2. Building an integrated human-machine decision-making system requires developing effective interfaces between the human and the machine. We develop such an interface by studying the multi-armed bandit problem, a simple sequential decision-making paradigm that can model a variety of tasks. We construct Bayesian algorithms for the multi-armed ban- dit problem, prove conditions under which these algorithms achieve good performance, and empirically show that, with appropriate priors, these algorithms effectively model human choice behavior; the priors then form a principled interface from human to machine. We take a signal processing perspective on the prior estimation problem and develop methods to estimate the priors given human choice data. 
    more » « less
  3. Nonlinear state-space models are ubiquitous in modeling real-world dynamical systems. Sequential Monte Carlo (SMC) techniques, also known as particle methods, are a well-known class of parameter estimation methods for this general class of state-space models. Existing SMC-based techniques rely on excessive sampling of the parameter space, which makes their computation intractable for large systems or tall data sets. Bayesian optimization techniques have been used for fast inference in state-space models with intractable likelihoods. These techniques aim to find the maximum of the likelihood function by sequential sampling of the parameter space through a single SMC approximator. Various SMC approximators with different fidelities and computational costs are often available for sample- based likelihood approximation. In this paper, we propose a multi-fidelity Bayesian optimization algorithm for the inference of general nonlinear state-space models (MFBO-SSM), which enables simultaneous sequential selection of parameters and approximators. The accuracy and speed of the algorithm are demonstrated by numerical experiments using synthetic gene expression data from a gene regulatory network model and real data from the VIX stock price index. 
    more » « less
  4. We consider the problem of online learning in the presence of distribution shifts that occur at an unknown rate and of unknown intensity. We derive a new Bayesian online inference approach to simultaneously infer these distribution shifts and adapt the model to the detected changes by integrating ideas from change point detection, switching dynamical systems, and Bayesian online learning. Using a binary ‘change variable,’ we construct an informative prior such that--if a change is detected--the model partially erases the information of past model updates by tempering to facilitate adaptation to the new data distribution. Furthermore, the approach uses beam search to track multiple change-point hypotheses and selects the most probable one in hindsight. Our proposed method is model-agnostic, applicable in both supervised and unsupervised learning settings, suitable for an environment of concept drifts or covariate drifts, and yields improvements over state-of-the-art Bayesian online learning approaches. 
    more » « less
  5. null (Ed.)
    Fairness in AI and Machine Learning is emerging to be a crucial research area to ensure social good. In contrast to offline working fashions, two research paradigms are devised for online learning: (1) Online Meta-Learning (OML learns good priors over model parameters (or learning to learn) in a sequential setting where tasks are revealed one after another. Although it provides a sub-linear regret bound, such techniques completely ignore the importance of learning with fairness which is a significant hallmark of human intelligence. (2) Online Fairness-Aware Learning that captures many classification problems for which fairness is a concern. But it aims to attain zero-shot generalization without any task-specific adaptation. This, therefore, limits the capability of a model to adapt to newly arrived data. To overcome such issues and bridge the gap, this paper is the first to propose a novel online meta-learning algorithm, namely FFML, which is under the setting of unfairness prevention. The key part of FFML is to learn good priors of an online fair classification model's primal and dual parameters that are associated with the model's accuracy and fairness, respectively. The problem is formulated in the form of a bi-level convex-concave optimization. The theoretic analysis provides sub-linear upper bounds for loss regret and violation of cumulative fairness constraints. The experiments demonstrate the versatility of FFML by applying it to classification on three real-world datasets and show substantial improvements over the best prior work on the tradeoff between fairness and classification accuracy. 
    more » « less