An important problem in designing human-robot systems is the integration of human intent and performance in the robotic control loop, especially in complex tasks. Bimanual coordination is a complex human behavior that is critical in many fine motor tasks, including robot-assisted surgery. To fully leverage the capabilities of the robot as an intelligent and assistive agent, online recognition of bimanual coordination could be important. Robotic assistance for a suturing task, for example, will be fundamentally different during phases when the suture is wrapped around the instrument (i.e., making a c- loop), than when the ends of the suture are pulled apart. In this study, we develop an online recognition method of bimanual coordination modes (i.e., the directions and symmetries of right and left hand movements) using geometric descriptors of hand motion. We (1) develop this framework based on ideal trajectories obtained during virtual 2D bimanual path following tasks performed by human subjects operating Geomagic Touch haptic devices, (2) test the offline recognition accuracy of bi- manual direction and symmetry from human subject movement trials, and (3) evalaute how the framework can be used to characterize 3D trajectories of the da Vinci Surgical System’s surgeon-side manipulators during bimanual surgical training tasks.more »
Data-Driven Classification of Human Movements in Virtual Reality–Based Serious Games: Preclinical Rehabilitation Study in Citizen Science
Background Sustained engagement is essential for the success of telerehabilitation programs. However, patients’ lack of motivation and adherence could undermine these goals. To overcome this challenge, physical exercises have often been gamified. Building on the advantages of serious games, we propose a citizen science–based approach in which patients perform scientific tasks by using interactive interfaces and help advance scientific causes of their choice. This approach capitalizes on human intellect and benevolence while promoting learning. To further enhance engagement, we propose performing citizen science activities in immersive media, such as virtual reality (VR). Objective This study aims to present a novel methodology to facilitate the remote identification and classification of human movements for the automatic assessment of motor performance in telerehabilitation. The data-driven approach is presented in the context of a citizen science software dedicated to bimanual training in VR. Specifically, users interact with the interface and make contributions to an environmental citizen science project while moving both arms in concert. Methods In all, 9 healthy individuals interacted with the citizen science software by using a commercial VR gaming device. The software included a calibration phase to evaluate the users’ range of motion along the 3 anatomical planes of motion and more »
- Award ID(s):
- 1928614
- Publication Date:
- NSF-PAR ID:
- 10332605
- Journal Name:
- JMIR Serious Games
- Volume:
- 10
- Issue:
- 1
- Page Range or eLocation-ID:
- e27597
- ISSN:
- 2291-9279
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Purpose Social media users share their ideas, thoughts, and emotions with other users. However, it is not clear how online users would respond to new research outcomes. This study aims to predict the nature of the emotions expressed by Twitter users toward scientific publications. Additionally, we investigate what features of the research articles help in such prediction. Identifying the sentiments of research articles on social media will help scientists gauge a new societal impact of their research articles. Design/methodology/approach Several tools are used for sentiment analysis, so we applied five sentiment analysis tools to check which are suitable for capturing a tweet's sentiment value and decided to use NLTK VADER and TextBlob. We segregated the sentiment value into negative, positive, and neutral. We measure the mean and median of tweets’ sentiment value for research articles with more than one tweet. We next built machine learning models to predict the sentiments of tweets related to scientific publications and investigated the essential features that controlled the prediction models. Findings We found that the most important feature in all the models was the sentiment of the research article title followed by the author count. We observed that the tree-based models performed bettermore »
-
Obeid, I. (Ed.)The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do notmore »
-
We are developing a system for long term Semi-Automated Rehabilitation At the Home (SARAH) that relies on low-cost and unobtrusive video-based sensing. We present a cyber-human methodology used by the SARAH system for automated assessment of upper extremity stroke rehabilitation at the home. We propose a hierarchical model for automatically segmenting stroke survivor's movements and generating training task performance assessment scores during rehabilitation. The hierarchical model fuses expert therapist knowledge-based approaches with data-driven techniques. The expert knowledge is more observable in the higher layers of the hierarchy (task and segment) and therefore more accessible to algorithms incorporating high level constraints relating to activity structure (i.e., type and order of segments per task). We utilize an HMM and a Decision Tree model to connect these high level priors to data driven analysis. The lower layers (RGB images and raw kinematics) need to be addressed primarily through data driven techniques. We use a transformer based architecture operating on low-level action features (tracking of individual body joints and objects) and a Multi-Stage Temporal Convolutional Network(MS-TCN) operating on raw RGB images. We develop a sequence combining these complimentary algorithms effectively, thus encoding the information from different layers of the movement hierarchy. Through this combination,more »
-
Advisor: Dr. Guillermo Araya (Ed.)The present study provides fundamental knowledge on an issue in fluid dynamics that is not well understood: flow separation and its association with heat and contaminant transport. In the separated region, a swirling motion increases the fluid drag force on the object. Very often, this is undesirable because it can seriously reduce the performance of engineered devices such as aircraft and turbines. Furthermore, Computational Fluid Dynamics (CFD) has gained ground due to its relatively low cost, high accuracy, and versatility. The principal aim of this study is to numerically elucidate the details behind momentum and passive scalar transport phenomena during turbulent boundary layer separation resulting from a wall-curvature-driven pressure gradient. With Open- FOAM CFD software, the numerical discretization of Reynolds-Averaged Navier-Stokes and passive scalar transport equations will be described in two-dimensional domains via the assessment of two popular turbulence models (i.e., the Spalart-Allmaras and the K-w SST model). The computational domain reproduces a wind tunnel geometry from previously performed experiments by Baskaran et al. (JFM, vol. 182 and 232 “A turbulent flow over a curved hill.” Part 1 and Part 2). Only the velocity and pressure distribution were measured there, which will be used for validation purposes in the presentmore »