Abstract Terrestrial ecosystems contribute most of the interannual variability (IAV) in atmospheric carbon dioxide (CO2) concentrations, but processes driving the IAV of net ecosystem CO2exchange (NEE) remain elusive. For a predictive understanding of the global C cycle, it is imperative to identify indicators associated with ecological processes that determine the IAV of NEE. Here, we decompose the annual NEE of global terrestrial ecosystems into their phenological and physiological components, namely maximum carbon uptake (MCU) and release (MCR), the carbon uptake period (CUP), and two parameters, α and β, that describe the ratio between actual versus hypothetical maximum C sink and source, respectively. Using long‐term observed NEE from 66 eddy covariance sites and global products derived from FLUXNET observations, we found that the IAV of NEE is determined predominately by MCU at the global scale, which explains 48% of the IAV of NEE on average while α, CUP, β, and MCR explain 14%, 25%, 2%, and 8%, respectively. These patterns differ in water‐limited ecosystems versus temperature‐ and radiation‐limited ecosystems; 31% of the IAV of NEE is determined by the IAV of CUP in water‐limited ecosystems, and 60% of the IAV of NEE is determined by the IAV of MCU in temperature‐ and radiation‐limited ecosystems. The Lund‐Potsdam‐Jena (LPJ) model and the Multi‐scale Synthesis and Terrestrial Model Inter‐comparison Project (MsTMIP) models underestimate the contribution of MCU to the IAV of NEE by about 18% on average, and overestimate the contribution of CUP by about 25%. This study provides a new perspective on the proximate causes of the IAV of NEE, which suggest that capturing the variability of MCU is critical for modeling the IAV of NEE across most of the global land surface.
more »
« less
Dynamic global vegetation models underestimate net CO 2 flux mean and inter-annual variability in dryland ecosystems
Abstract Despite their sparse vegetation, dryland regions exert a huge influence over global biogeochemical cycles because they cover more than 40% of the world surface (Schimel 2010 Science 327 418–9). It is thought that drylands dominate the inter-annual variability (IAV) and long-term trend in the global carbon (C) cycle (Poulter et al 2014 Nature 509 600–3, Ahlstrom et al 2015 Science 348 895–9, Zhang et al 2018 Glob. Change Biol . 24 3954–68). Projections of the global land C sink therefore rely on accurate representation of dryland C cycle processes; however, the dynamic global vegetation models (DGVMs) used in future projections have rarely been evaluated against dryland C flux data. Here, we carried out an evaluation of 14 DGVMs (TRENDY v7) against net ecosystem exchange (NEE) data from 12 dryland flux sites in the southwestern US encompassing a range of ecosystem types (forests, shrub- and grasslands). We find that all the models underestimate both mean annual C uptake/release as well as the magnitude of NEE IAV, suggesting that improvements in representing dryland regions may improve global C cycle projections. Across all models, the sensitivity and timing of ecosystem C uptake to plant available moisture was at fault. Spring biases in gross primary production (GPP) dominate the underestimate of mean annual NEE, whereas models’ lack of GPP response to water availability in both spring and summer monsoon are responsible for inability to capture NEE IAV. Errors in GPP moisture sensitivity at high elevation forested sites were more prominent during the spring, while errors at the low elevation shrub and grass-dominated sites were more important during the monsoon. We propose a range of hypotheses for why model GPP does not respond sufficiently to changing water availability that can serve as a guide for future dryland DGVM developments. Our analysis suggests that improvements in modeling C cycle processes across more than a quarter of the Earth’s land surface could be achieved by addressing the moisture sensitivity of dryland C uptake.
more »
« less
- Award ID(s):
- 1655499
- PAR ID:
- 10332647
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 16
- Issue:
- 9
- ISSN:
- 1748-9326
- Page Range / eLocation ID:
- 094023
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Some plants exhibit dynamic hydraulic regulation, in which the strictness of hydraulic regulation (i.e. iso/anisohydry) changes in response to environmental conditions. However, the environmental controls over iso/anisohydry and the implications of flexible hydraulic regulation for plant productivity remain unknown.InJuniperus osteosperma, a drought‐resistant dryland conifer, we collected a 5‐month growing season time series ofin situ, high temporal‐resolution plant water potential () and stand gross primary productivity (GPP). We quantified the stringency of hydraulic regulation associated with environmental covariates and evaluated how predawn water potential contributes to empirically predicting carbon uptake.Juniperus osteospermashowed less stringent hydraulic regulation (more anisohydric) after monsoon precipitation pulses, when soil moisture and atmospheric demand were high, and corresponded with GPP pulses. Predawn water potential matched the timing of GPP fluxes and improved estimates of GPP more strongly than soil and/or atmospheric moisture, notably resolving GPP underestimation before vegetation green‐up.Flexible hydraulic regulation appears to allowJ. osteospermato prolong soil water extraction and, therefore, the period of high carbon uptake following monsoon precipitation pulses. Water potential and its dynamic regulation may account for why process‐based and empirical models commonly underestimate the magnitude and temporal variability of dryland GPP.more » « less
-
Abstract The terrestrial net ecosystem productivity (NEP) has increased during the past three decades, but the mechanisms responsible are still unclear. We analyzed 17 years (2001–2017) of eddy‐covariance measurements of NEP, evapotranspiration (ET) and light and water use efficiency from a boreal coniferous forest in Southern Finland for trends and inter‐annual variability (IAV). The forest was a mean annual carbon sink (252 [42] gC ), and NEP increased at rate +6.4–7.0 gC (or ca. +2.5% ) during the period. This was attributed to the increasing gross‐primary productivity GPP and occurred without detectable change in ET. The start of annual carbon uptake period was advanced by 0.7 d , and increase in GPP and NEP outside the main growing season contributed ca. one‐third and one‐fourth of the annual trend, respectively. Meteorological factors were responsible for the IAV of fluxes but did not explain the long‐term trends. The growing season GPP trend was strongest in ample light during the peak growing season. Using a multi‐layer ecosystem model, we showed that direct fertilization effect diminishes when moving from leaf to ecosystem, and only 30–40% of the observed ecosystem GPP increase could be attributed to . The increasing trend in leaf‐area index (LAI), stimulated by forest thinning in 2002, was the main driver of the enhanced GPP and NEP of the mid‐rotation managed forest. It also compensated for the decrease of mean leaf stomatal conductance with increasing and LAI, explaining the apparent proportionality between observed GPP and trends. The results emphasize that attributing trends to their physical and physiological drivers is challenged by strong IAV, and uncertainty of LAI and species composition changes due to the dynamic flux footprint. The results enlighten the underlying mechanisms responsible for the increasing terrestrial carbon uptake in the boreal zone.more » « less
-
Abstract Spring and summer vegetation productivity in Siberia shows opposing responses to warmer spring. Spring warming causes excessive vegetation growth and earlier start of photosynthesis, enhancing productivity in spring. However, this leads to reduced productivity in the following season (i.e., summer) through soil moisture depletion. To understand how an exceptional spring heatwave (HW) affected ecosystem carbon uptake, we investigated the spatiotemporal cascade of gross primary production (GPP) and multiple climate variables over Siberia in 2020, using a satellite‐retrieved GPP product (GOSIF‐GPP) and the ERA5‐Land reanalysis data set for 2001–2020. Results showed a positive impact of anomalous spring warming on annual GPP (GPPann). GPPannfrom GOSIF‐GPP in West Siberia (55°–70°N, 50°–90°E) was enhanced by up to 10% above the 2001–2019 average despite continued dry conditions from May to August. In East Siberia (55–70°N, 90–130°E), the GPP increases for May and June were sufficient to compensate for marked reduction of GPP in July due to negative anomaly in radiation. In addition, the higher sensitivity of GPPannto spring temperature in West Siberia than in East Siberia suggests that GPP increase coupled with strong warming and respective excessive vegetation growth might be more pronounced in the western region, as observed in 2020. Our results indicate that the warming trend in spring, combined with possible extreme heat events, could elevate annual carbon uptake in Siberia, particularly in West Siberia. Further, this case study for the extreme HW event that occurred in 2020 can provide useful insight for understanding future change in carbon uptake over Siberia.more » « less
-
Abstract The advancement of spring and the differential ability of organisms to respond to changes in plant phenology may lead to “phenological mismatches” as a result of climate change. One potential for considerable mismatch is between migratory birds and food availability in northern breeding ranges, and these mismatches may have consequences for ecosystem function. We conducted a three‐year experiment to examine the consequences for CO2exchange of advanced spring green‐up and altered timing of grazing by migratory Pacific black brant in a coastal wetland in western Alaska. Experimental treatments represent the variation in green‐up and timing of peak grazing intensity that currently exists in the system. Delayed grazing resulted in greater net ecosystem exchange (NEE) and gross primary productivity (GPP), while early grazing reduced CO2uptake with the potential of causing net ecosystem carbon (C) loss in late spring and early summer. Conversely, advancing the growing season only influenced ecosystem respiration (ER), resulting in a small increase in ER with no concomitant impact on GPP or NEE. The experimental treatment that represents the most likely future, with green‐up advancing more rapidly than arrival of migratory geese, results in NEE changing by 1.2 µmol m−2 s−1toward a greater CO2sink in spring and summer. Increased sink strength, however, may be mitigated by early arrival of migratory geese, which would reduce CO2uptake. Importantly, while the direct effect of climate warming on phenology of green‐up has a minimal influence on NEE, the indirect effect of climate warming manifest through changes in the timing of peak grazing can have a significant impact on C balance in northern coastal wetlands. Furthermore, processes influencing the timing of goose migration in the winter range can significantly influence ecosystem function in summer habitats.more » « less
An official website of the United States government

