Abstract Human mobility is fundamental to a range of applications including epidemic control, urban planning, and traffic engineering. While laws governing individual movement trajectories and population flows across locations have been extensively studied, the predictability of population-level mobility during the COVID-19 pandemic driven by specific activities such as work, shopping, and recreation remains elusive. Here we analyze mobility data for six place categories at the US county level from 2020 February 15 to 2021 November 23 and measure how the predictability of these mobility metrics changed during the COVID-19 pandemic. We quantify the time-varying predictability in each place category using an information-theoretic metric, permutation entropy. We find disparate predictability patterns across place categories over the course of the pandemic, suggesting differential behavioral changes in human activities perturbed by disease outbreaks. Notably, predictability change in foot traffic to residential locations is mostly in the opposite direction to other mobility categories. Specifically, visits to residences had the highest predictability during stay-at-home orders in March 2020, while visits to other location types had low predictability during this period. This pattern flipped after the lifting of restrictions during summer 2020. We identify four key factors, including weather conditions, population size, COVID-19 case growth, and government policies, and estimate their nonlinear effects on mobility predictability. Our findings provide insights on how people change their behaviors during public health emergencies and may inform improved interventions in future epidemics.
more »
« less
Estimating spread of contact-based contagions in a population through sub-sampling
Various phenomena such as viruses, gossips, and physical objects (e.g., packages and marketing pamphlets) can be spread through physical contacts. The spread depends on how people move, i.e., their mobility patterns. In practice, mobility patterns of an entire population is never available, and we usually have access to location data of a subset of individuals. In this paper, we formalize and study the problem of estimating the spread of a phenomena in a population, given that we only have access to sub-samples of location visits of some individuals in the population. We show that simple solutions that estimate the spread in the sub-sample and scale it to the population, or more sophisticated solutions that rely on modeling location visits of individuals do not perform well in practice. Instead, we directly model the co-locations between the individuals. We introduce PollSpreader and PollSusceptible, two novel approaches that model the co-locations between individuals using a contact network , and infer the properties of the contact network using the sub-sample to estimate the spread of the phenomena in the entire population. We analytically show that our estimates provide an upper bound and a lower bound on the spread of the disease in expectation. Finally, using a large high-resolution real-world mobility dataset, we experimentally show that our estimates are accurate in practice, while other methods that do not correctly account for co-locations between individuals result in entirely wrong observations (e.g, premature prediction of herd-immunity).
more »
« less
- PAR ID:
- 10332821
- Date Published:
- Journal Name:
- Proceedings of the VLDB Endowment
- Volume:
- 14
- Issue:
- 9
- ISSN:
- 2150-8097
- Page Range / eLocation ID:
- 1557 to 1569
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Arunachalam, Viswanathan (Ed.)During the COVID-19 pandemic, the prevalence of asymptomatic cases challenged the reliability of epidemiological statistics in policymaking. To address this, we introducedcontagion potential(CP) as a continuous metric derived from sociodemographic and epidemiological data to quantify the infection risk posed by the asymptomatic within a region. However, CP estimation is hindered by incomplete or biased incidence data, where underreporting and testing constraints make direct estimation infeasible. To overcome this limitation, we employ a hypothesis-testing approach to infer CP from sampled data, allowing for robust estimation despite missing information. Even within the sample collected from spatial contact data, individuals possess partial knowledge of their neighborhoods, as their awareness is restricted to interactions captured by available tracking data. We introduce an adjustment factor that calibrates the sample CPs so that the sample is a reasonable estimate of the population CP. Further complicating estimation, biases in epidemiological and mobility data arise from heterogeneous reporting rates and sampling inconsistencies, which we address throughinverse probability weightingto enhance reliability. Using a spatial model for infection spread through social mixing and an optimization framework based on the SIRS epidemic model, we analyze real infection datasets from Italy, Germany, and Austria. Our findings demonstrate that statistical methods can achieve high-confidence CP estimates while accounting for variations in sample size, confidence level, mobility models, and viral strains. By assessing the effects of bias, social mixing, and sampling frequency, we propose statistical corrections to improve CP prediction accuracy. Finally, we discuss how reliable CP estimates can inform outbreak mitigation strategies despite the inherent uncertainties in epidemiological data.more » « less
-
Infectious disease spread within the human population can be conceptualized as a complex system composed of individuals who interact and transmit viruses through spatio-temporal processes that manifest across and between scales. The complexity of this system ultimately means that the spread of infectious diseases is difficult to understand, predict, and respond to effectively. Research interest in GeoAI for public health has been fueled by the increased availability of rich data sources such as human mobility data, OpenStreetMap data, contact tracing data, symptomatic online surveys, retail and commerce data, genomics data, and more. This data availability has resulted in a wide variety of data-driven solutions for infectious disease spread prediction which show potential in enhancing our forecasting capabilities. This book chapter (1) motivates the need for AI-based solutions in public health by showing the heterogeneity of human behavior related to health, (2) provides a brief survey of current state-of-the-art solutions using AI for infectious disease spread prediction, (3) describes a use-case of using large-scale human mobility data to inform AI models for the prediction of infectious disease spread in a city, and (4) provides future research directions and ideas.more » « less
-
Abstract The characteristics of food environments people are exposed to, such as the density of fast food (FF) outlets, can impact their diet and risk for diet-related chronic disease. Previous studies examining the relationship between food environments and nutritional health have produced mixed findings, potentially due to the predominant focus on static food environments around people’s homes. As smartphone ownership increases, large-scale data on human mobility (i.e., smartphone geolocations) represents a promising resource for studying dynamic food environments that people have access to and visit as they move throughout their day. This study investigates whether mobility data provides meaningful indicators of diet, measured as FF intake, and diet-related disease, evaluating its usefulness for food environment research. Using a mobility dataset consisting of 14.5 million visits to geolocated food outlets in Los Angeles County (LAC) across a representative sample of 243,644 anonymous and opted-in adult smartphone users in LAC, we construct measures of visits to FF outlets aggregated over users living in neighborhood. We find that the aggregated measures strongly and significantly correspond to self-reported FF intake, obesity, and diabetes in a diverse, representative sample of 8,036 LAC adults included in a population health survey carried out by the LAC Department of Public Health. Visits to FF outlets were a better predictor of individuals’ obesity and diabetes than their self-reported FF intake, controlling for other known risks. These findings suggest mobility data represents a valid tool to study people’s use of dynamic food environments and links to diet and health.more » « less
-
Close contacts between individuals provide opportunities for the transmission of diseases, including COVID-19. While individuals take part in many different types of interactions, including those with classmates, co-workers and household members, it is the conglomeration of all of these interactions that produces the complex social contact network interconnecting individuals across the population. Thus, while an individual might decide their own risk tolerance in response to a threat of infection, the consequences of such decisions are rarely so confined, propagating far beyond any one person. We assess the effect of different population-level risk-tolerance regimes, population structure in the form of age and household-size distributions, and different interaction types on epidemic spread in plausible human contact networks to gain insight into how contact network structure affects pathogen spread through a population. In particular, we find that behavioural changes by vulnerable individuals in isolation are insufficient to reduce those individuals’ infection risk and that population structure can have varied and counteracting effects on epidemic outcomes. The relative impact of each interaction type was contingent on assumptions underlying contact network construction, stressing the importance of empirical validation. Taken together, these results promote a nuanced understanding of disease spread on contact networks, with implications for public health strategies.more » « less
An official website of the United States government

