Abstract Shaping the intensity profile of a laser beam is desired by various industrial applications. In this paper, a new approach is presented to design and fabricate liquid crystal (LC) micro‐optical elements (MOEs) with engineered Pancharatnam–Berry (PB) phases for beam shaping. By generalizing the Snell's law for spatially variant PB phases, molecular orientation patterns are designed for the liquid crystal MOEs to shape a Gaussian laser beam into flattop intensity profiles with circular and square cross‐sections, with the β parameter varied from 4 to 42. It is demonstrated that such liquid crystal beam shaping MOEs can be fabricated with high throughput and high resolution by using a photopatterning technique based on plasmonic metamasks and that they produce excellent beam quality, no zero‐order light leakage with a beam size from 10 to 600 µm. As the plasmonic metamasks allow for encoding arbitrary molecular orientations, i.e., arbitrary geometric phase profiles, the approaches presented here are widely applicable to large‐scale manufacturing of liquid crystal MOEs for any beam shapes.
more »
« less
InterTwin: Deep Learning Approaches for Computing Measures of Effectiveness for Traffic Intersections
Microscopic simulation-based approaches are extensively used for determining good signal timing plans on traffic intersections. Measures of Effectiveness (MOEs) such as wait time, throughput, fuel consumption, emission, and delays can be derived for variable signal timing parameters, traffic flow patterns, etc. However, these techniques are computationally intensive, especially when the number of signal timing scenarios to be simulated are large. In this paper, we propose InterTwin, a Deep Neural Network architecture based on Spatial Graph Convolution and Encoder-Decoder Recurrent networks that can predict the MOEs efficiently and accurately for a wide variety of signal timing and traffic patterns. Our methods can generate probability distributions of MOEs and are not limited to mean and standard deviation. Additionally, GPU implementations using InterTwin can derive MOEs, at least four to five orders of magnitude faster than microscopic simulations on a conventional 32 core CPU machine.
more »
« less
- Award ID(s):
- 1922782
- PAR ID:
- 10332843
- Date Published:
- Journal Name:
- Applied Sciences
- Volume:
- 11
- Issue:
- 24
- ISSN:
- 2076-3417
- Page Range / eLocation ID:
- 11637
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Key to the effectiveness of schedule-driven approaches to real-time traffic control is an ability to accurately predict when sensed vehicles will arrive at and pass through the intersection. Prior work in schedule-driven traffic control has assumed a static vehicle arrival model. However, this static predictive model ignores the fact that the queue count and the incurred delay should vary as different partial signal timing schedules (i.e., different possible futures) are explored during the online planning process. In this paper, we propose an alternative arrival time model that incorporates queueing dynamics into this forward search process for a signal timing schedule, to more accurately capture how the intersection’s queues vary over time. As each search state is generated, an incremental queueing delay is dynamically projected for each vehicle. The resulting total queueing delay is then considered in addition to the cumulative delay caused by signal operations. We demonstrate the potential of this approach through microscopic traffic simulation of a real-world road network, showing a 10 − 15% reduction in average wait times over the schedule-driven traffic signal control system in heavy traffic scenarios.more » « less
-
null (Ed.)Abstract A passive local eavesdropper can leverage Website Fingerprinting (WF) to deanonymize the web browsing activity of Tor users. The value of timing information to WF has often been discounted in recent works due to the volatility of low-level timing information. In this paper, we more carefully examine the extent to which packet timing can be used to facilitate WF attacks. We first propose a new set of timing-related features based on burst-level characteristics to further identify more ways that timing patterns could be used by classifiers to identify sites. Then we evaluate the effectiveness of both raw timing and directional timing which is a combination of raw timing and direction in a deep-learning-based WF attack. Our closed-world evaluation shows that directional timing performs best in most of the settings we explored, achieving: (i) 98.4% in undefended Tor traffic; (ii) 93.5% on WTF-PAD traffic, several points higher than when only directional information is used; and (iii) 64.7% against onion sites, 12% higher than using only direction. Further evaluations in the open-world setting show small increases in both precision (+2%) and recall (+6%) with directional-timing on WTF-PAD traffic. To further investigate the value of timing information, we perform an information leakage analysis on our proposed handcrafted features. Our results show that while timing features leak less information than directional features, the information contained in each feature is mutually exclusive to one another and can thus improve the robustness of a classifier.more » « less
-
null (Ed.)The main question to address in this paper is to recommend optimal signal timing plans in real time under incidents by incorporating domain knowledge developed with the traffic signal timing plans tuned for possible incidents, and learning from historical data of both traffic and implemented signals timing. The effectiveness of traffic incident management is often limited by the late response time and excessive workload of traffic operators. This paper proposes a novel decision-making framework that learns from both data and domain knowledge to real-time recommend contingency signal plans that accommodate non-recurrent traffic, with the outputs from real-time traffic prediction at least 30 min in advance. Specifically, considering the rare occurrences of engagement of contingency signal plans for incidents, it is proposed to decompose the end-to-end recommendation task into two hierarchical models—real-time traffic prediction and plan association. The connections between the two models are learnt through metric learning, which reinforces partial-order preferences observed from historical signal engagement records. The effectiveness of this approach is demonstrated by testing this framework on the traffic network in Cranberry Township, Pennsylvania, U.S., in 2019. Results show that the recommendation system has a precision score of 96.75% and recall of 87.5% on the testing plan, and makes recommendations an average of 22.5 min lead time ahead of Waze alerts. The results suggest that this framework is capable of giving traffic operators a significant time window to access the conditions and respond appropriately.more » « less
-
Prior art in traffic incident detection relies on high sensor coverage and is primarily based on decision-tree and random forest models that have limited representation capacity and, as a result, cannot detect incidents with high accuracy. This paper presents IncidentNet - a novel approach for classifying, localizing, and estimating the severity of traffic incidents using deep learning models trained on data captured from sparsely placed sensors in urban environments. Our model works on microscopic traffic data that can be collected using cameras installed at traffic intersections. Due to the unavailability of datasets that provide microscopic traffic details and traffic incident details simultaneously, we also present a methodology to generate a synthetic microscopic traffic dataset that matches given macroscopic traffic data. IncidentNet1 achieves a traffic incident detection rate of 98%, with false alarm rates of less than 7% in 197 seconds on average in urban environments with cameras on less than 20% of the traffic intersections.more » « less
An official website of the United States government

