skip to main content


Title: Clustering Object Trajectories for Intersection Traffic Analysis [Clustering Object Trajectories for Intersection Traffic Analysis]
Award ID(s):
1922782
NSF-PAR ID:
10332852
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 6th International Conference on Vehicle Technology and Intelligent Transport Systems - VEHITS
Page Range / eLocation ID:
98 to 105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The traffic congestion hits most big cities in the world - threatening long delays and serious reductions in air quality. City and local government officials continue to face challenges in optimizing crowd flow, synchronizing traffic and mitigating threats or dangerous situations. One of the major challenges faced by city planners and traffic engineers is developing a robust traffic controller that eliminates traffic congestion and imbalanced traffic flow at intersections. Ensuring that traffic moves smoothly and minimizing the waiting time in intersections requires automated vehicle detection techniques for controlling the traffic light automatically, which are still challenging problems. In this paper, we propose an intelligent traffic pattern collection and analysis model, named TPCAM, based on traffic cameras to help in smooth vehicular movement on junctions and set to reduce the traffic congestion. Our traffic detection and pattern analysis model aims at detecting and calculating the traffic flux of vehicles and pedestrians at intersections in real-time. Our system can utilize one camera to capture all the traffic flows in one intersection instead of multiple cameras, which will reduce the infrastructure requirement and potential for easy deployment. We propose a new deep learning model based on YOLOv2 and adapt the model for the traffic detection scenarios. To reduce the network burdens and eliminate the deployment of network backbone at the intersections, we propose to process the traffic video data at the network edge without transmitting the big data back to the cloud. To improve the processing frame rate at the edge, we further propose deep object tracking algorithm leveraging adaptive multi-modal models and make it robust to object occlusions and varying lighting conditions. Based on the deep learning based detection and tracking, we can achieve pseudo-30FPS via adaptive key frame selection. 
    more » « less
  2. null (Ed.)
  3. We propose a new approach for constructing the underlying map from trajectory data. Our algorithm is based on the idea that road segments can be identified as stable subtrajectory clusters in the data. For this, we consider how subtrajectory clusters evolve for varying distance values, and choose stable values for these. In doing so we avoid a global proximity parameter. Within trajectory clusters, we choose representatives, which are combined to form the map. We experimentally evaluate our algorithm on vehicle and hiking tracking data. These experiments demonstrate that our approach can naturally separate roads that run close to each other and can deal with outliers in the data, two issues that are notoriously difficult in road network reconstruction. 
    more » « less
  4. Crowded metropolises present unique challenges to the potential deployment of autonomous vehicles. Safety of pedestrians cannot be compromised and personal privacy must be preserved. Smart city intersections will be at the core of Artificial Intelligence (AI)-powered citizen-friendly traffic management systems for such metropolises. Hence, the main objective of this work is to develop an experimentation framework for designing applications in support of secure and efficient traffic intersections in urban areas. We integrated a camera and a programmable edge computing node, deployed within the COSMOS testbed in New York City, with an Eclipse sensiNact data platform provided by Kentyou. We use this pipeline to collect and analyze video streams in real-time to support smart city applications. In this demo, we present a video analytics pipeline that analyzes the video stream from a COSMOS’ street-level camera to extract traffic/crowd-related information and sends it to a dedicated dashboard for real-time visualization and further assessment. This is done without sending the raw video, in order to avoid violating pedestrians’ privacy. 
    more » « less
  5. We present a novel data-driven simulation environment for modeling traffic in metropolitan street intersections. Using real-world tracking data collected over an extended period of time, we train trajectory forecasting models to learn agent interactions and environmental constraints that are difficult to capture conventionally. Trajectories of new agents are first coarsely generated by sampling from the spatial and temporal generative distributions, then refined using state-of-the-art trajectory forecasting models. The simulation can run either autonomously, or under explicit human control conditioned on the generative distributions. We present the experiments for a variety of model configurations. Under an iterative prediction scheme, the way-pointsupervised TrajNet++ model obtained 0.36 Final Displacement Error (FDE) in 20 FPS on an NVIDIA A100 GPU. 
    more » « less