skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Recognizing Novice Learner’s Modeling Behaviors
Modeling is an important aspect of scientific problem-solving. How- ever, modeling is a difficult cognitive process for novice learners in part due to the high dimensionality of the parameter search space. This work investigates 50 college students’ parameter search behaviors in the context of ecological modeling. The study revealed important differences in behaviors of successful and unsuccessful students in navigating the parameter space. These differences suggest opportunities for future development of adaptive cognitive scaffolds to support different classes of learners  more » « less
Award ID(s):
1636848
PAR ID:
10333004
Author(s) / Creator(s):
Date Published:
Journal Name:
International conference on intelligent tutoring systems. Springer, Athens, Greece.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)
    Open-ended learning environments (OELEs) have become an important tool for promoting constructivist STEM learning. OELEs are known to promote student engagement and facilitate a deeper understanding of STEM topics. Despite their benefits, OELEs present significant challenges to novice learners who may lack the self-regulated learning (SRL) processes they need to become effective learners and problem solvers. Recent studies have revealed the importance of the relationship between students' affective states, cognitive processes, and performance in OELEs. Yet, the relations between students' use of cognitive processes and their corresponding affective states have not been studied in detail. In this paper, we investigate the relations between studentsż˝f affective states and the coherence in their cognitive strategies as they work on developing causal models of scientific processes in the XYZ OELE. Our analyses and results demonstrate that there are significant differences in the coherence of cognitive strategies used by high- and low-performing students. As a result, there are also significant differences in the affective states of the high- and low-performing students that are related to the coherence of their cognitive activities. This research contributes valuable empirical evidence on studentsż˝f cognitive-affective dynamics in OELEs, emphasizing the subtle ways in which students' understanding of their cognitive processes impacts their emotional reactions in learning environments. 
    more » « less
  2. Virtual laboratories that enable novice scientists to construct, evaluate and revise models of complex systems heavily involve parameter estimation tasks. We seek to understand novice strategies for parameter estimation in model exploration to design better cognitive supports for them. We conducted a study of 50 college students for a parameter estimation task in exploring an ecological model. We identified three types of behavioral patterns and their underlying cognitive strategies. Specifically, the students used systematic search, problem decomposition and reduction, and global search followed by local search as their cognitive strategies 
    more » « less
  3. The Theory of Inventive Problem Solving (TRIZ) method and toolkit provides a well-structured approach to support engineering design with pre-defined steps: interpret and define the problem, search for standard engineering parameters, search for inventive principles to adapt, and generate final solutions. The research presented in this paper explores the neuro-cognitive differences of each of these steps. We measured the neuro-cognitive activation in the prefrontal cortex (PFC) of 30 engineering students. Neuro-cognitive activation was recorded while students completed an engineering design task. The results show a varying activation pattern. When interpreting and defining the problem, higher activation is found in the left PFC, generally associated with goal directed planning and making analytical. Neuro-cognitive activation shifts to the right PFC during the search process, a region usually involved in exploring the problem space. During solution generation more activation occurs in the medial PFC, a region generally related to making associations. The findings offer new insights and evidence explaining the dynamic neuro-cognitive activations when using TRIZ in engineering design. 
    more » « less
  4. The Theory of Inventive Problem Solving (TRIZ) method and toolkit provides a well-structured approach to support engineering design with pre-defined steps: interpret and define the problem, search for standard engineering parameters, search for inventive principles to adapt, and generate final solutions. The research presented in this paper explores the neurocognitive differences of each of these steps. We measured the neuro-cognitive activation in the prefrontal cortex (PFC) of 30 engineering students. Neuro-cognitive activation was recorded while students completed an engineering design task. The results show a varying activation pattern. When interpreting and defining the problem, higher activation is found in the left PFC, generally associated with goal directed planning and making analytical judgement when interpreting and defining the problem. Neuro-cognitive activation shifts to the right PFC during the search process, a region usually involved in exploring the problem space. During solution generation more activation occurs in the medial PFC, a region generally related to making associations. The findings offer new insights and evidence explaining the dynamic neuro-cognitive activations when using TRIZ in engineering design. 
    more » « less
  5. Cognitive control and rule learning are two important mechanisms that explain how goals influence behavior and how knowledge is acquired. These mechanisms are studied heavily in cognitive science literature within highly controlled tasks to understand human cognition. Although they are closely linked to the student behaviors that are often studied within intelligent tutoring systems (ITS), their direct effects on learning have not been explored. Understanding these underlying cognitive mechanisms of beneficial and harmful student behaviors can provide deeper insight into detecting such behaviors and improve predictive models of student learning. In this paper, we present a thinkaloud study where we asked students to narrate their thought processes while solving probability problems in ASSISTments. Students are randomly assigned to one of two conditions that are designed to induce the two modes of cognitive control based on the Dual Mechanisms of Control framework. We also observe how the students go through the phases of rule learning as defined in a rule learning paradigm. We discuss the effects of these different mechanisms on learning, and how the information they provide can be used in student modeling. 
    more » « less