skip to main content

In the 21st Century, it becomes of utmost importance for the educator and learner to be mindful of the evolution and application of factors that govern the mental state. Many studies revealed that the success of a professional is strongly dependent on their emotion management skills to manage themselves and associated responsibilities in a demanding environment. Emotionally intelligent professionals are also able to handle challenging situations involving other people. These days many industries, research establishments, and universities that hire graduate students conduct specialized training to enhance their soft skills, mainly interpersonal skills, to make their employees perform at their highest potential. One can maximize the gain from soft skills if they are well aware of the state of human psychology developed in the form of emotional intelligence and positive intelligence. In the last two decades, the concept of emotional intelligence was created by professional personality coaching groups. These trainings are heavily attended by professionals engaged in marketing and organization leaders to enhance their capability in the workplace. However, emotional intelligence is mainly about being aware of the mental state and maintaining control of one's actions during various mental states, such as anger, happiness, sadness, remorse, etc. Aspiring graduate students in more » science and technology generally lack formal training in understanding human behavior and traits that can adversely impact their ability to perform and innovate at the highest level. This paper focuses on training graduate students about the popular and practical transactional analysis science and assessing their competence in utilizing this knowledge to decipher their own and other people's behavior. Transactional analysis was taught to students via Student presentation-based effective teaching (SPET) methodology. Under this approach, graduate students enrolled in the MECH 500 Class were provided a set of questions to answer by self-reading of the recommended textbook "I am OK You are OK by Thomas Harris." Each student individually answered the assignment questions and then worked in the group to prepare a group presentation for the in-class discussion. Three group discussions were conducted to present different views about the four types of transactions and underlying human traits. Before transactional analysis training, students were also trained in Positive intelligence psychology tools for a similar objective. After the discussion, students were surveyed about the depth of their understanding. Students also reflected their views on the utility of transactional analysis with respect to positive intelligence. More than 75% of students mention that they gain high competency in understanding, defining, and utilizing transactional analysis. This study presents insights for positively impacting graduate students' mindsets as they pursue an unpredicted course of research that can sometimes become very challenging. « less
Award ID(s):
Publication Date:
Journal Name:
EDUlearn 2022, 14th annual International Conference on Education and New Learning Technologies
Sponsoring Org:
National Science Foundation
More Like this
  1. Instructor-led presentation-based teaching mainly focuses on delivering content. Whereas student active presentations-based teaching approaches require students to take leadership in learning actions. Many teaching and learning strategies were adopted to foster active student participation during in-class learning activities. We developed the student presentation-based effective teaching (SPET) approach in 2014 to make student presentation activity the central element of learning challenging concepts. We have developed several versions to meet the need for teaching small classes (P. Tyagi, "Student Presentation Based Effective Teaching (SPET) Approach for Advanced Courses," in ASME IMECE 2016-66029, V005T06A026), large enrolment classes (P. Tyagi, "Student Presentation Based Teaching (SPET) Approach for Classes With Higher Enrolment," ASME IMECE 2018-88463, V005T07A035), and online teaching during COVID-19. (P. Tyagi, "Second Modified Student Presentation Based Effective Teaching (SPET) Method Tested in COVID-19 Affected Senior Level Mechanical Engineering Course," in ASME IMECE 2020-23615, V009T09A026). The SPET approach has successfully engaged students with varied interests and competence levels in the learning process. SPET approach has also made it possible to cover new topics such as training engineering students about positive intelligence skills to foster lifelong learning aptitude and doing engineering projects in a group setting. However, it was noted that many students who weremore »overwhelmed with parallel academic demands in other courses and different activities were underperforming via SPET-based learning strategies. SPET core functioning depends on the following steps: Step 1: Provide a set of conceptual and topical questions for students to answer individually after self-education from the recommended textbook or course material, Step-2: Group presentations are prepared by the prepared students for in-class discussion, Step-3: Group makes a presentation in class 1-2 weeks after the day of the assignment to seek instructor feedback and to do peer discussion. The instructor noted that students unfamiliar with the new concepts and terminologies in the SPET assignment struggled to respond to questions individually and contribute to the group discussion based on their presentation. Several motivated students who invested time in familiarizing new concepts and terminologies met or exceeded the expectations. However, a significant student population struggled. To alleviate this issue author has implemented a further improvement in SPET approach. This paper reports teaching experiments conducted in MECH 487 Photovoltaic Cells and Solar Thermal Energy System and MECH 462 Design of Energy Systems course. This improvement requires augmenting SPET with instructor-led concept familiarization discussion on the day of issuing the assignment or close to that; for this step instructor utilized exemplary student work from prior SPET-based teaching of the same course. In the survey, many students expressed their views about the improvement and reported introductory discussions were helpful and addressed several reservations and impediments students encountered. This paper will discuss the structure of the new improvement strategy and outcomes-including student feedback and comments.« less
  2. A recently launched National Science Foundation Research Traineeship (NRT) aims to enhance graduate education by integrating research and professional skill development within a diverse, inclusive and supportive academy. This contribution will describe three initial interventions within this NRT, namely, an onboarding and orientation event, a career exploration symposium, and a multidisciplinary introductory course. In addition, the assessment of each of these interventions – and the outcomes thereof – will be presented and discussed. Prior to the onboarding and orientation event, trainees received the event’s agenda and checklists summarizing pre- and post-event assignments. Pre-event assignments were designed to familiarize trainees with the NRT, the process of drafting an individual development plan (IDP), and the consent form required for traineeship evaluation purposes. During the event – held online due to COVID-19 – and following introductions, trainees were given the opportunity to ask questions stemming from the pre-event assignments. Subsequently, trainees were introduced to several tools (e.g., checklists as well as sample developmental network maps and mentoring contracts) to guide and track their development and progression through the traineeship. The event concluded with a discussion on topics that also constituted post-event assignments, including registering and preparing for both the career exploration symposium andmore »the multidisciplinary introductory course. Survey data collected after the event indicated that trainees valued the opportunity to learn more about the NRT, ask questions, and meet faculty who expressed a commitment to student success. Shortly thereafter, trainees attended a career exploration symposium and moderated sessions featuring speakers representing careers of interest. Indeed, the symposium was purposely designed to expose trainees to a wide range of career pathways. In addition, practical career tools and skills for STEM professionals were discussed in several breakout sessions. Finally, the symposium ended with a panel discussion comprising four diverse and accomplished recent Ph.D. graduates, who discussed mental health and communication issues prior to answering questions asked by trainees. Trainee responses to a post-symposium survey were also positive as trainees reported the following: an increase in knowledge of career paths and hiring sectors, an appreciation for the diversity of the presenters and career paths, and the attainment of at least one new skill or strategy they felt would aid in their graduate school success. In their first semester in the NRT, trainees take an interdisciplinary course covering the high priority convergent research topic targeted by the traineeship. This course is co-taught by faculty of seven different departments and is composed of four units, each focused on a research question requiring extensive interdisciplinary collaboration to be answered. Teams of at least three core faculty with the cumulative expertise needed to answer each question co-teach each unit, emphasizing concepts that students must understand to address the question at hand. During this course, four multi-departmental interdisciplinary student teams are formed, each focusing on – and conducting a critical review of the literature in – one of the research questions. Indeed, emphasis is placed on providing students with the knowledge and tools to find, critically evaluate, summarize, and present literature on the topic.« less
  3. Engineering Futures (EF) is a professional development program developed by Tau Beta Pi, the Engineering Honor Society, in the 1980s to provide undergraduate engineering students with the “soft skills” necessary for professional success. Originally, the EF program included a series of day-long, interactive workshops led by volunteer facilitators and hosted on-site at college campuses. The original sessions included People Skills (interpersonal problem communication and resolution); Team Chartering (understanding team dynamics); Group Process (tools for effective meetings); and Analytical Problem Solving (brainstorming, list reduction and evaluation criteria). Over the decades, the EF program adapted to meet the changing needs of undergraduate students, with options for shorter sessions and the addition of a module on Effective Presentation Skills in the early 2000s. In the 2010s, the EF program directors began to explore opportunities to expand the curriculum to address new challenges. A new partnership in 2015 led to the addition of two new modules: Equity, Inclusion & Engineering Ethics; and Research Mentoring. In 2017, Tau Beta Pi partnered with several other organizations in a successful proposal to the National Science Foundation to develop updated training materials focusing on communications, teamwork and leadership skills. These materials are being designed in a modular fashionmore »that allows them to be adjusted for different audiences (undergraduates, graduate students, professionals) and the project includes funding for a “train the trainers” program that will enable the EF materials to be deployed nationally at little or no cost to hosting organizations. This paper provides a historical context for the EF program, describes the recent efforts to update and expand the curriculum, and provides insights from several years of participation and program evaluation data.« less
  4. Abstract We investigate the link between individual differences in science reasoning skills and mock jurors’ deliberation behavior; specifically, how much they talk about the scientific evidence presented in a complicated, ecologically valid case during deliberation. Consistent with our preregistered hypothesis, mock jurors strong in scientific reasoning discussed the scientific evidence more during deliberation than those with weaker science reasoning skills. Summary With increasing frequency, legal disputes involve complex scientific information (Faigman et al., 2014; Federal Judicial Center, 2011; National Research Council, 2009). Yet people often have trouble consuming scientific information effectively (McAuliff et al., 2009; National Science Board, 2014; Resnick et al., 2016). Individual differences in reasoning styles and skills can affect how people comprehend complex evidence (e.g., Hans, Kaye, Dann, Farley, Alberston, 2011; McAuliff & Kovera, 2008). Recently, scholars have highlighted the importance of studying group deliberation contexts as well as individual decision contexts (Salerno & Diamond, 2010; Kovera, 2017). If individual differences influence how jurors understand scientific evidence, it invites questions about how these individual differences may affect the way jurors discuss science during group deliberations. The purpose of the current study was to examine how individual differences in the way people process scientific information affects the extentmore »to which jurors discuss scientific evidence during deliberations. Methods We preregistered the data collection plan, sample size, and hypotheses on the Open Science Framework. Jury-eligible community participants (303 jurors across 50 juries) from Phoenix, AZ (Mage=37.4, SD=16.9; 58.8% female; 51.5% White, 23.7% Latinx, 9.9% African-American, 4.3% Asian) were paid $55 for a 3-hour mock jury study. Participants completed a set of individual questionnaires related to science reasoning skills and attitudes toward science prior to watching a 45-minute mock armed-robbery trial. The trial included various pieces of evidence and testimony, including forensic experts testifying about mitochondrial DNA evidence (mtDNA; based on Hans et al. 2011 materials). Participants were then given 45 minutes to deliberate. The deliberations were video recorded and transcribed to text for analysis. We analyzed the deliberation content for discussions related to the scientific evidence presented during trial. We hypothesized that those with stronger scientific and numeric reasoning skills, higher need for cognition, and more positive views towards science would discuss scientific evidence more than their counterparts during deliberation. Measures We measured Attitudes Toward Science (ATS) with indices of scientific promise and scientific reservations (Hans et al., 2011; originally developed by the National Science Board, 2004; 2006). We used Drummond and Fischhoff’s (2015) Scientific Reasoning Scale (SRS) to measure scientific reasoning skills. Weller et al.’s (2012) Numeracy Scale (WNS) measured proficiency in reasoning with quantitative information. The NFC-Short Form (Cacioppo et al., 1984) measured need for cognition. Coding We identified verbal utterances related to the scientific evidence presented in court. For instance, references to DNA evidence in general (e.g. nuclear DNA being more conclusive than mtDNA), the database that was used to compare the DNA sample (e.g. the database size, how representative it was), exclusion rates (e.g. how many other people could not be excluded as a possible match), and the forensic DNA experts (e.g. how credible they were perceived). We used word count to operationalize the extent to which each juror discussed scientific information. First we calculated the total word count for each complete jury deliberation transcript. Based on the above coding scheme we determined the number of words each juror spent discussing scientific information. To compare across juries, we wanted to account for the differing length of deliberation; thus, we calculated each juror’s scientific deliberation word count as a proportion of their jury’s total word count. Results On average, jurors discussed the science for about 4% of their total deliberation (SD=4%, range 0-22%). We regressed proportion of the deliberation jurors spend discussing scientific information on the four individual difference measures (i.e., SRS, NFC, WNS, ATS). Using the adjusted R-squared, the measures significantly accounted for 5.5% of the variability in scientific information deliberation discussion, SE=0.04, F(4, 199)=3.93, p=0.004. When controlling for all other variables in the model, the Scientific Reasoning Scale was the only measure that remained significant, b=0.003, SE=0.001, t(203)=2.02, p=0.045. To analyze how much variability each measure accounted for, we performed a stepwise regression, with NFC entered at step 1, ATS entered at step 2, WNS entered at step 3, and SRS entered at step 4. At step 1, NFC accounted for 2.4% of the variability, F(1, 202)=5.95, p=0.02. At step 2, ATS did not significantly account for any additional variability. At step 3, WNS accounted for an additional 2.4% of variability, ΔF(1, 200)=5.02, p=0.03. Finally, at step 4, SRS significantly accounted for an additional 1.9% of variability in scientific information discussion, ΔF(1, 199)=4.06, p=0.045, total adjusted R-squared of 0.055. Discussion This study provides additional support for previous findings that scientific reasoning skills affect the way jurors comprehend and use scientific evidence. It expands on previous findings by suggesting that these individual differences also impact the way scientific evidence is discussed during juror deliberations. In addition, this study advances the literature by identifying Scientific Reasoning Skills as a potentially more robust explanatory individual differences variable than more well-studied constructs like Need for Cognition in jury research. Our next steps for this research, which we plan to present at AP-LS as part of this presentation, incudes further analysis of the deliberation content (e.g., not just the mention of, but the accuracy of the references to scientific evidence in discussion). We are currently coding this data with a software program called Noldus Observer XT, which will allow us to present more sophisticated results from this data during the presentation. Learning Objective: Participants will be able to describe how individual differences in scientific reasoning skills affect how much jurors discuss scientific evidence during deliberation.« less
  5. Innovation training is considered critical for the future of our country, yet despite the important role, opportunities for students to develop innovation skills are limited. For STEM students, training in innovation principles and processes are frequently extra curricular pursuits, such as unpaid internships with start up organizations, shadowing innovation professionals, or obtaining an additional business degree or minor covering innovation principles. The National Science Foundation has funded the authors with a Science, Technology, Engineering and Mathematics (S STEM) grant to provide scholarships combined with research on best practices for recruitment, retention, and development of innovation skills for a diverse group of low income undergraduate students. Students in the program come from STEM disciplines in engineering and the physical sciences however, business students are also integrated into innovation courses although they are not funded by the S STEM grant Design, development, and implementation of the grant funded program’s first innovation related course, a 2 week fall intercession course will be presented Th is first year course is designed to provide the students with an introduction to innovation, develop and nurture the students’ innovation mindset and skills, and also help the students’ successful transition to college. The first-year two-week intercession course wasmore »designed and developed with two credit hours focusing on content related to innovation and one credit hour focusing on student success topics. The significant academic course components included: 1) interactive active-learning modules related to innovation processes, identifying where good ideas come from, working in teams, leadership, project management, and communication and presentation skills; 2) team innovation projects, one topic-assigned, applying skills learned in the content modules to develop innovation and team collaboration skills; and 3) integration of business students with STEM students which together gives viewpoints and experiences on product and customer needs. It is important to our nation’s health and safety to instill innovation in our students. In addition, today’s students are interested in innovation and in learning how to apply innovation techniques in their professional and personal lives. The course was designed for teams of four STEM students to one business student which provides a balanced input needed for this type of project taking into account the skillset of the technically oriented STEM students and the marketing-oriented business students, as well as personality types. This ensures that all voices are heard, and topical areas are addressed. There was no problem in getting faculty interest in developing the course, and the collaboration between retention professionals and faculty went well. After the course, an iterative improvement retrospective will be performed on the program as implemented to this point to inform improvements for next year’s cohort. This material is based upon work supported by the National Science Foundation under Grant No. 2030297. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.« less