skip to main content


Title: Experiences of neurodivergent students in graduate STEM programs
Introduction

Despite efforts to increase the participation of marginalized students in Science, Technology, Engineering, and Mathematics (STEM), neurodivergent students have remained underrepresented and underserved in STEM graduate programs. This qualitative study aims to increase understanding of the experiences of neurodivergent graduate students pursuing advanced degrees in STEM. In this analysis, we consider how common graduate school experiences interface with the invisibility of neurological diversity, thus contributing to a set of unique challenges experienced by neurodivergent students.

Materials and methods

In this qualitative study, 10 focus group sessions were conducted to examine the experiences of 18 students who identify as neurodivergent in graduate STEM programs at a large, research-intensive (R1) university. We used thematic analysis of the transcripts from these focus groups to identify three overarching themes within the data.

Results

The findings are presented through a novel model for understanding neurodivergent graduate STEM student experiences. The findings suggest that students who identify as neurodivergent feel pressure to conform to perceived neurotypical norms to avoid negative perceptions. They also may self-silence to maintain stability within the advisor-advisee relationship. The stigma associated with disability labels contributes a heavy cognitive and emotional load as students work to mask neurodiversity-related traits, navigate decisions about disclosure of their neurodivergence, and ultimately, experience significant mental health challenges and burnout. Despite these many challenges, the neurodivergent graduate students in this study perceived aspects of their neurodivergence as a strength.

Discussion

The findings may have implications for current and future graduate students, for graduate advisors who may or may not be aware of their students’ neurodivergence, and for program administrators who influence policies that impact the wellbeing and productivity of neurodivergent students.

 
more » « less
Award ID(s):
2105721
NSF-PAR ID:
10502903
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Psychology
Volume:
14
ISSN:
1664-1078
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background

    Despite efforts to increase the participation of marginalized students, neurodivergent students remain underrepresented in graduate STEM programs. Prior research shows that these students often experience challenges related to key aspects of writing. The objective of this qualitative study is to deepen understanding of the writing experiences, strengths, and challenges of neurodivergent students pursuing graduate degrees in STEM fields. In this analysis, we consider the factors that influence the writing-specific challenges faced by neurodivergent students in graduate STEM programs. This work also explores how neurodivergent students leverage strengths and strategies for success in graduate-level writing tasks.

    Results

    This qualitative study draws on Social Cognitive Theory (SCT) to consider the ways cognitive, behavioral, and environmental factors impact writing experiences. We used thematic analysis of the transcripts from 13 focus groups and 1 interview to examine the writing experiences of 31 students who identify as neurodivergent in graduate STEM programs. The findings suggest that many writing challenges faced by neurodivergent graduate students are behaviors and beliefs that emerge in response to environmental factors such as the culture of STEM fields, prior experiences with writing assignments, anxiety driven by intensive feedback cycles, and perceived and experienced stigma. Study participants employed a range of collaborative and situational strategies to support and enhance their writing productivity.

    Conclusion

    These findings may provide insight for current and future neurodivergent graduate students as they adjust to the intense writing demands of graduate degree programs and for graduate program administrators and faculty advisors as they consider new ways to support the academic success of neurodivergent graduate students.

     
    more » « less
  2. Purpose

    Supporting community college transfer students represents a critical strategy for broadening participation in STEM. In addition to being a racially diverse group, students who pursue STEM degrees by way of community college report frequent interests in graduate study and academic careers. Thus, supporting and expanding transfer students’ PhD interests can help to diversify the STEM professoriate. This study aims to identify the experiences that predict PhD interests among students who transferred into the computer science major from a community college.

    Design/methodology/approach

    Relying on longitudinal survey data from over 150 community college transfer students throughout their first year at their receiving four-year university, we used regression analysis to identify the post-transfer college experiences that predict early interest in PhDs.

    Findings

    We found that receiving information about PhDs from a professor strongly predicted PhD interest among transfer students. Relationships with other variables indicate that the provision of information about graduate school was more likely to occur for students who participated in undergraduate research experiences than for those participating in internships. Descriptive data document inequities in who has access to these types of experiences.

    Originality/value

    This paper provides new insight into how STEM departments can develop targeted efforts to ensure that information about PhD training is equitably available to all transfer students. Working to ensure that faculty equitably communicate with students about PhD opportunities may go a long way in countering potential deterrents among transfer students who may be interested in such pathways.

     
    more » « less
  3. Purpose

    Racially and ethnically minoritized (REM) women continue to be underrepresented in science, technology, engineering and mathematics (STEM) programs and careers. Peer mentoring is one strategy that can support their participation. This study explores the experiences of Black women peer mentors in an online peer mentoring program at two historically Black institutions.

    Design/methodology/approach

    A qualitative case study approach was utilized to explore the impact of an online peer mentoring program on peer mentors' STEM self-efficacy, sense of community, STEM identity and intent to persist in STEM.

    Findings

    Analysis identified five themes relating to peer mentors' experiences in the program: (1) an “I can do this” approach: confidence and self-efficacy; (2) utility of like others; (3) “beacons of light”: intersecting and malleable identities; (4) skills development and (5) motivation and reciprocity. Further, challenges of the online relationship were shared.

    Originality/value

    The study contributes to the body of knowledge by demonstrating the utility of an online peer mentoring model among women mentors enrolled in STEM programs at two historically Black institutions. The findings support those who are historically marginalized in participating in and remaining in STEM.

     
    more » « less
  4. null (Ed.)
    Student research in STEM education is an important learning component for both undergraduate and graduate students. It is not sufficient for students to learn passively in lecture-based classrooms without engaging and immersing themselves in the educational process through real-world research learning. Experiential learning for STEM students can involve conducting research, alongside and through the guidance of their professors, early in a student’s undergraduate or graduate program. The authors consider such experiences to be the hallmark of a high-quality STEM education and something every student, undergraduate and graduate, should have during the course of their programs. The purpose of this case study is to document the faculty authors’ experiences in student-faculty research and provide guidance and recommendations for best practices based upon the authors’ experience, data, and literature findings. Moreover, the study presents the experience of the faculty authors’ international student researchers in STEM with focus on two student researchers, one undergraduate and one graduate, who are international STEM. The students served as co-authors on this project. Findings from this case study indicate that students were highly engaged in the research process and found these skills valuable preparation for further study and career. Moreover, the students expressed enthusiasm and engagement for the research process. 
    more » « less
  5. Abstract Background

    While previous work in higher education documents the impact of high tuition costs of attending graduate school as a key motivator in attrition decisions, in engineering, most graduate students are fully funded on research fellowships, indicating there are different issues causing individuals to consider departure. There has been little work characterizing nonfinancial costs for students in engineering graduate programs and the impact these costs may have on persistence or attrition.

    Purpose/Hypothesis

    Framed through the lens of cost as a component of the expectancy–value theory framework and the graduate attrition decisions (GrAD) model conceptual framework specific to engineering attrition, the purpose of this article is to characterize the costs engineering graduate students associate with attending graduate school and document how costs affect students' decisions to persist or depart.

    Design/Method

    Data were collected through semistructured interviews with 42 engineering graduate students from R1 engineering doctoral programs across the United States who have considered, are currently considering, or have chosen to depart from their engineering PhD programs with a master's degree.

    Results

    In addition to time and money, which are costs previously captured in research, participants identified costs to life balance, costs to well‐being, and identify‐informed opportunity costs framed in terms of what “could have been” if they had chosen to not go to graduate school. As these costs relate to persistence, students primarily identified their expended effort and already‐incurred costs as the primary motivator for persistence, rather than any expected benefits of a graduate degree.

    Conclusion

    The findings of this work expand the cost component of the GrAD model conceptual framework, providing a deeper understanding of the costs that graduate students relate to their persistence in engineering graduate programs. It evidences that motivation to persist may not be due to particularly strong goals but may result from costs already incurred. Through this research, the scholarly community, students, advisors, and university policymakers can better understand the needs of engineering graduate students as they navigate graduate study.

     
    more » « less