skip to main content


Title: Clock-linked genes underlie seasonal migratory timing in a diurnal raptor
Seasonal migration is a dynamic natural phenomenon that allows organisms to exploit favourable habitats across the annual cycle. While the morphological, physiological and behavioural changes associated with migratory behaviour are well characterized, the genetic basis of migration and its link to endogenous biological time-keeping pathways are poorly understood. Historically, genome-wide research has focused on genes of large effect, whereas many genes of small effect may work together to regulate complex traits like migratory behaviour. Here, we explicitly relax stringent outlier detection thresholds and, as a result, discover how multiple biological time-keeping genes are important to migratory timing in an iconic raptor species, the American kestrel ( Falco sparverius ). To validate the role of candidate loci in migratory timing, we genotyped kestrels captured across autumn migration and found significant associations between migratory timing and genetic variation in metabolic and light-input pathway genes that modulate biological clocks ( top1, phlpp1, cpne4 and peak1) . Further, we demonstrate that migrating individuals originated from a single panmictic source population, suggesting the existence of distinct early and late migratory genotypes (i.e. chronotypes). Overall, our results provide empirical support for the existence of a within-population-level polymorphism in genes underlying migratory timing in a diurnally migrating raptor.  more » « less
Award ID(s):
1942313
NSF-PAR ID:
10333307
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
289
Issue:
1974
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Migration is an adaptive life‐history strategy across taxa that helps individuals maximise fitness by obtaining forage and avoiding predation risk. The mechanisms driving migratory changes are poorly understood, and links between migratory behaviour, space use, and demographic consequences are rare.

    Here, we use a nearly 20‐year record of individual‐based monitoring of a large herbivore, elk (Cervus canadensis) to test hypotheses for changing patterns of migration in and adjacent to a large protected area in Banff National Park (BNP), Canada.

    We test whether bottom‐up (forage quality) or top‐down (predation risk) factors explained trends in (i) the proportion of individuals using 5 different migratory tactics, (ii) differences in survival rates of migratory tactics during migration and whilst on summer ranges, (iii) cause‐specific mortality by wolves and grizzly bears, and (iv) population abundance.

    We found dramatic shifts in migration consistent with behavioural plasticity in individual choice of annual migratory routes. Shifts were inconsistent with exposure to the bottom‐up benefits of migration. Instead, exposure to landscape gradients in predation risk caused by exploitation outside the protected area drove migratory shifts. Carnivore exploitation outside the protected area led to higher survival rates for female elk remaining resident or migrating outside the protected area.

    Cause‐specific mortality aligned with exposure to predation risk along migratory routes and summer ranges. Wolf predation risk was higher on migratory routes than summer ranges of montane‐migrant tactics, but wolf predation risk traded‐off with heightened risk from grizzly bears on summer ranges. A novel eastern migrant tactic emerged following a large forest fire that enhanced forage in an area with lower predation risk outside of the protected area.

    The changes in migratory behaviour translated to population abundance, where abundance of the montane‐migratory tactics declined over time. The presence of diverse migratory life histories maintained a higher total population abundance than would have been the case with only one migratory tactic in the population.

    Our study demonstrates the complex ways in which migratory populations change over time through behavioural plasticity and associated demographic consequences because of individuals balancing predation risk and forage trade‐offs.

     
    more » « less
  2. Abstract

    Rapid advances in the field of movement ecology have led to increasing insight into both the population‐level abundance patterns and individual‐level behaviour of migratory species. Despite this progress, research questions that require scaling individual‐level understanding of the behaviour of migrating organisms to the population level remain difficult to investigate.

    To bridge this gap, we introduce a generalizable framework for training full‐annual cycle individual‐based models of migratory movements by combining information from tracking studies and species occurrence records. Focusing on migratory birds, we call this method: Models of Individual Movement of Avian Species (MIMAS). We implement MIMAS to design individual‐based models of avian migration that are trained using previously published weekly occurrence maps and fit via Approximate Bayesian Computation.

    MIMAS models leverage individual‐ and population‐level information to faithfully represent continental‐scale migration patterns. Models can be trained successfully for species even when little existing individual‐level data is available for parameterization by relying on population‐level information. In contrast to existing mathematical models of migration, MIMAS explicitly represents and estimates behavioural attributes of migrants. MIMAS can additionally be used to simulate movement over consecutive migration seasons, and models can be easily updated or validated as new empirical data on migratory behaviours becomes available.

    MIMAS can be applied to a variety of research questions that require representing individual movement at large scales. We demonstrate three applied uses for MIMAS: estimating population‐specific migratory phenology, predicting the spatial patterns and magnitude of ectoparasite dispersal by migrants, and simulating the spread of a pathogen across the annual cycle of a migrant species. Currently, MIMAS can easily be used to build models for hundreds of migratory landbird species but can also be adapted in the future to build models of other types of migratory animals.

     
    more » « less
  3. Abstract

    Divergent migratory strategies among populations can result in population‐level differences in timing of reproduction (allochrony) and local adaptation. However, the mechanisms underlying among‐population variation in timing are insufficiently understood, particularly in females.

    We studied differences in reproductive development and its related mechanisms along the hypothalamic–pituitary–gonadal axis (HPG) in closely related migratory and sedentary (i.e. resident) female dark‐eyed juncos (Junco hyemalis) living together in sympatry during early spring. Despite exposure to the same environmental cues in early spring, residents initiate breeding prior to the departure of migrants for their breeding grounds. We investigated whether residents would be more reproductively developed than migrants based on their behavioural differences. Alternatively, females could exhibit similar reproductive development in response to the same environmental cues despite differences in migratory behaviour. To compare their degree of reproductive development during seasonal sympatry and the underlying mechanisms of these differences, we collected ovarian and liver tissue in early spring prior to migration and compared transcript abundance of genes associated with reproduction using quantitative PCR. We also used stable hydrogen isotopes to infer relative breeding and wintering latitude of migrants.

    We found higher transcript abundance of luteinizing hormone receptor and aromatase in the ovary in addition to significantly heavier ovaries in residents than in migrants. Together, these results suggest greater sensitivity and response to upstream endocrine stimulation in resident females. Transcript abundance for other receptors in the ovary and liver associated with reproduction, however, did not differ between populations. When comparing ovarian development within migrants, females with lower hydrogen isotopes (indicating higher breeding latitudes) had smaller ovaries, suggesting that longer‐distance migrations may further delay reproductive development.

    Based on differences in ovary mass and transcript abundance, we conclude that females that differ in migratory strategy also differ in timing of reproductive development. These results support that divergent migratory behaviour drives allochrony and could enable reproductive isolation between populations; mechanistic differences at the level of gonadal stimulation can explain these differences in timing of reproductive development.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  4. null (Ed.)
    Abstract In migratory birds, among- and within-species heterogeneity in response to climate change may be attributed to differences in migration distance and environmental cues that affect timing of arrival at breeding grounds. We used eBird observations and a within-species comparative approach to examine whether migration distance (with latitude as a proxy) and weather predictors can explain spring arrival dates at the breeding site in a raptor species with a widespread distribution and diverse migration strategies, the American Kestrel Falco sparverius. We found an interactive effect between latitude and spring minimum temperatures on arrival dates, whereby at lower latitudes (short-distance migrants) American Kestrels arrived earlier in warmer springs and later in colder springs, but American Kestrels at higher latitudes (long-distance migrants) showed no association between arrival time and spring temperatures. Increased snow cover delayed arrival at all latitudes. Our results support the hypothesis that short-distance migrants are better able to respond to conditions on the breeding ground than are long-distance migrants, suggesting that long-distance migrants may be more vulnerable to shifts in spring conditions that could lead to phenological mismatch between peak resources and nesting. 
    more » « less
  5. Abstract Background Spawning migrations are a widespread phenomenon among fishes, often occurring in response to environmental conditions prompting movement into reproductive habitats (migratory cues). However, for many species, individual fish may choose not to migrate, and research suggests that conditions preceding the spawning season (migratory primers) may influence this decision. Few studies have provided empirical descriptions of these prior conditions, partly due to a lack of long-term data allowing for robust multi-year comparisons. To investigate how primers and cues interact to shape the spawning migrations of coastal fishes, we use acoustic telemetry data from Common Snook ( Centropomus undecimalis ) in Everglades National Park, Florida, USA. A contingent of Snook migrate between rivers and coastal spawning sites, varying annually in both the proportion of the population that migrates and the timing of migration within the spawning season. However, the specific environmental factors that serve as migratory primers and cues remain unknown. Methods We used eight years of acoustic telemetry data (2012–2019) from 173 tagged Common Snook to investigate how primers and cues influence migratory patterns at different temporal scales. We hypothesize that (1) interannual differences in hydrologic conditions preceding the spawning season contribute to the number of individuals migrating each year, and (2) specific environmental cues trigger the timing of migrations during the spawning season. We used GLMMs to model both the annual and seasonal migratory response in relation to flow characteristics (water level, rate of change in water level), other hydrologic/abiotic conditions (temperature, salinity), fish size, and phenological cues independent of riverine conditions (photoperiod, lunar cycle). Results We found that the extent of minimum marsh water level prior to migration and fish size influence the proportion of Snook migrating each year, and that high river water level and daily rates of change serve as primary cues triggering migration timing. Conclusion Our findings illustrate how spawning migrations are shaped by environmental factors acting at different temporal scales and emphasize the importance of long-term movement data in understanding these patterns. Research providing mechanistic descriptions of conditions that promote migration and reproduction can help inform management decisions aimed at conserving ecologically and economically important species. 
    more » « less