skip to main content


Title: Toward on-demand modulation and annihilation of aeroelastic limit cycle oscillations with dynamic upstream disturbance generator
Periodic upstream flow disturbances from a bluff body have recently been shown to be able to modulate and annihilate limit cycle oscillations (LCOs) in a downstream aeroelastic wing section under certain conditions. To further investigate these phenomena, we have implemented a controllable wind tunnel disturbance generator to enable quantification of the parameter ranges under which these nonlinear interactions can occur. This disturbance generator, consisting of a pitch-actuated cylinder with an attached splitter plate, can be oscillated to produce a von Karman type wake with vortex shedding frequency equal to the oscillation frequency over a range of frequencies around the natural shedding frequency of the cylinder alone. At vortex shedding frequencies away from the LCO frequency of the wing, forced oscillations were observed in the wing, but the wing did not enter self-sustaining LCOs. However, when disturbances were introduced near the LCO frequency, the initially static downstream wing entered self-sustaining oscillations in the presence of the incoming vortices, and these LCOs persisted when the disturbance generator was stopped. Annihilation of the wing LCOs was also observed disturbance vortices were introduced upstream of the wing in LCO.  more » « less
Award ID(s):
2015983
NSF-PAR ID:
10333340
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Online Symposium on Aeroelasticity, Fluid-Structure Interaction, and Vibrations
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nonlinear aeroelastic limit-cycle oscillations (LCOs) have become an area of interest due to both detrimental effects on flying vehicles and use in renewable energy harvesting. Initial studies on the interaction between aeroelastic systems and incoming flow disturbances have shown that disturbances can have significant effects on LCO amplitude, with some cases resulting in spontaneous annihilation of the LCO. This paper explores this interaction through wind-tunnel experiments using a variable-frequency disturbance generator to produce flow disturbances at frequencies near the inherent LCO frequency of an aeroelastic system with pitching and heaving degrees of freedom. The results show that incoming disturbances produced at frequencies approaching the LCO frequency from below produce a cyclic growth-decay in LCO amplitude that resembles interference between multiple sine waves with slightly varying frequencies. An aeroelastic inverse technique is applied to the results to study the transfer of energy between the pitching and heaving degrees of freedom as well as the aerodynamic power moving into and out of the system. Finally, the growth-decay cycles are shown to both excite LCOs in an initially stationary wing and annihilate preexisting LCOs in the same wing by appropriately timing the initiation and termination of disturbance generator motion. 
    more » « less
  2. The interaction between upstream flow disturbance generators and downstream aeroelastic structures has been the focus of several recent studies at North Carolina State University. Building on this work, which observed the modulation of limit cycle oscillations (LCOs) in the presence of vortex wakes, this study examines the design and validation of a novel disturbance generator consisting of an oscillating cylinder with an attached splitter plate. Analytical design of the bluff body was performed based on specific flow conditions which produced LCO annihilation in previous studies. Computational fluid dynamics simulations and experimental wind tunnel tests were used to validate the ability of the new disturbance generator to produce the desired wake region. Future work will see the implementation of this novel design in conjunction with aeroelastic structures in an effort to modulate and control LCOs, including the excitation and annihilation thereof. 
    more » « less
  3. null (Ed.)
    We present the dynamics of a hydrofoil free to oscillate in a plane as it interacts with vortices that are shed from a cylinder placed upstream. We consider cases where the cylinder is (i) fixed, (ii) forced to rotate constantly in one direction or (iii) forced to rotate periodically. When the upstream cylinder is fixed, at lower reduced velocities, the hydrofoil oscillates with a frequency equal to the frequency of vortices shed from the cylinder, and at higher reduced velocities with a frequency equal to half of the shedding frequency. When we force the cylinder to rotate in one direction, we control its wake and directly influence the response of the hydrofoil. When the rotation rate goes beyond a critical value, the vortex shedding in the cylinder's wake is suppressed and the hydrofoil is moved to one side and remains mainly static. When we force the cylinder to rotate periodically, we control the frequency of vortex shedding, which will be equal to the rotation frequency. Then at lower rotation frequencies, the hydrofoil interacts with one of the vortices in its oscillation path in the positive crossflow (transverse) direction, and with the second vortex in the negative crossflow direction, resulting in a 2:1 ratio between its inline and crossflow oscillations and a figure-eight trajectory. At higher rotation frequencies, the hydrofoil interacts with both shed vortices on its positive crossflow path and again in its negative crossflow path, resulting in a 1:1 ratio between its inline and crossflow oscillations and a linear trajectory. 
    more » « less
  4. Insects rely on their olfactory system to forage, prey, and mate. They can sense odor emitted from sources of their interest, use their highly efficient flapping-wing mechanism to follow odor trails, and track down odor sources. During such an odor-guided navigation, flapping wings not only serve as propulsors for generating lift and maneuvering, but also actively draw odors to the antennae via wing-induced flow. This helps enhance olfactory detection by mimicking “sniffing” in mammals. However, due to a lack of quantitative measuring tools and empirical evidence, we have a poor understanding of how the induced flow generated by flapping kinematics affects the odor landscape. In the current study, we designed a canonical simulation to investigate the impact of flapping motion on the odor plume structures. A sphere was placed in the upstream and releases odor at the Schmidt number of 0.71 and Reynolds number of 200. In the downstream, an ellipsoidal airfoil underwent a pitch-plunge motion. Both two- and three-dimensional cases are simulated with Strouhal number of 0.9. An in-house immersed-boundary-method-based CFD solver was applied to investigate the effects of flapping locomotion on the wake topology and odor distribution. From our simulation results, remarkable resemblances were observed between the wake topology and odor landscape. For the 2D case, an inverse von Kármán vortex street was formed in the downstream. For the 3D case, the wake bifurcates and forms two branches of horseshoe-like vortices. The results revealed in this study have the potential to advance our understanding of the odor-tracking capability of insects navigation and lead to transformative advancements in unmanned aerial devices that will have the potential to greatly impact national security equipment and industrial applications for chemical disaster, drug trafficking detection, and GPS-denied indoor environment. 
    more » « less
  5. Abstract

    The spanwise undulated cylinder geometry inspired by seal whiskers has been shown to alter shedding frequency and reduce fluid forces significantly compared to smooth cylindrical geometry. Prior research has parameterized the whisker-inspired geometry and demonstrated the relevance of geometric variations on force reduction properties. Among the geometric parameters, undulation wavelength was identified as a significant contributor to forcing changes. To analyze the effect of undulation wavelength, a thorough investigation isolating changes in wavelength is performed to expand upon previous research that parameterized whisker-inspired geometry and the relevance of geometric variations on the force reduction properties. A set of five whisker-inspired models of varying wavelength are computationally simulated at a Reynolds number of 250 and compared with an equivalent aspect ratio smooth elliptical cylinder. Above a critical non-dimensional value, the undulation wavelength reduces the amplitude and frequency of vortex shedding accompanied by a reduction in oscillating lift force. Frequency shedding is tied to the creation of wavelength-dependent vortex structures which vary across the whisker span. These vortices produce distinct shedding modes in which the frequency and phase of downstream structures interact to decrease the oscillating lift forces on the whisker model with particular effectiveness around the wavelength values typically found in nature. The culmination of these location-based modes produces a complex and spanwise-dependent lift frequency spectra at those wavelengths exhibiting maximum force reduction. Understanding the mechanisms of unsteady force reduction and the relationship between undulation wavelength and frequency spectra is critical for the application of this geometry to vibration tuning and passive flow control for vortex-induced vibration (VIV) reduction.

     
    more » « less