skip to main content


Search for: All records

Award ID contains: 2015983

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 8, 2024
  2. Nonlinear aeroelastic limit-cycle oscillations (LCOs) have become an area of interest due to both detrimental effects on flying vehicles and use in renewable energy harvesting. Initial studies on the interaction between aeroelastic systems and incoming flow disturbances have shown that disturbances can have significant effects on LCO amplitude, with some cases resulting in spontaneous annihilation of the LCO. This paper explores this interaction through wind-tunnel experiments using a variable-frequency disturbance generator to produce flow disturbances at frequencies near the inherent LCO frequency of an aeroelastic system with pitching and heaving degrees of freedom. The results show that incoming disturbances produced at frequencies approaching the LCO frequency from below produce a cyclic growth-decay in LCO amplitude that resembles interference between multiple sine waves with slightly varying frequencies. An aeroelastic inverse technique is applied to the results to study the transfer of energy between the pitching and heaving degrees of freedom as well as the aerodynamic power moving into and out of the system. Finally, the growth-decay cycles are shown to both excite LCOs in an initially stationary wing and annihilate preexisting LCOs in the same wing by appropriately timing the initiation and termination of disturbance generator motion. 
    more » « less
  3. Madarshahian, Ramin ; Hemez, François (Ed.)
  4. In this paper, we present an approach to obtain a desired leading-edge vortex (LEV) shedding pattern from unsteady airfoils through the execution of suitable motion kinematics. Previous research revealed that LEV shedding is associated with the leading-edge suction parameter (LESP) exceeding a maximum threshold. A low-order method called LESP-modulated discrete vortex method (LDVM) was also developed to predict the onset and termination of LEV shedding from an airfoil undergoing prescribed motion kinematics. In the current work, we present an inverse-aerodynamic formulation based on the LDVM to generate the appropriate motion kinematics to achieve a prescribed LESP variation, and thus, the desired LEV shedding characteristics from the airfoil. The algorithm identifies the kinematic state of the airfoil required to attain the target LESP value through an iterative procedure performed inside the LDVM simulation at each time step. Several case studies are presented to demonstrate design scenarios such as tailoring the duration and intensity of LEV shedding, inducing LEV shedding from the chosen surface of the airfoil, promoting or suppressing LEV shedding during an unsteady motion on demand, and achieving similar LEV shedding patterns using different maneuvers. The kinematic profiles generated by the low-order formulation are also simulated using a high-fidelity unsteady Reynolds-averaged Navier–Stokes method to confirm the accuracy of the low-order model. 
    more » « less
  5. This paper presents a state-variable formulation to model and simulate the 2D unsteady aerodynamics of an airfoil undergoing arbitrary motion kinematics. The model builds upon a large-angle unsteady aerodynamic formulation in which the airfoil is represented using a lumped vortex element (LVE) model. The airfoil is divided into several panels, with a bound vortex placed on each panel. At any time instant, the bound-vortex strengths are determined by employing zero-normal-flow conditions at the control points located on each panel. The vorticity shed from the trailing edge of the airfoil is modeled using discrete vortices that move freely in the flow field. The required state variables are first identified, and all the time derivative terms of the state variables are then derived to form the final state-variable representation. Trailing-edge vortex shedding is incorporated using the Kelvin condition. The final state variable equation can be solved as an ordinary differential equation using any standard ODE-solving algorithm. Three case studies are presented here to evaluate the predictions of the model. In the cases considered here, the airfoil undergoes various unsteady plunge motions. The aerodynamic load history and the wake patterns are compared against the results from the low-order model developed by Narsipur et al. [1] in previous research. The comparison shows that the current state-variable formulation captures the unsteady flow characteristics and the aerodynamic load in good agreement with the reference results. 
    more » « less
  6. Due to COVID-19, engineering summer camps offered by North Carolina State University (NCSU) shifted to a virtual format for the summer of 2021 and required a new curriculum to be designed with an emphasis on providing a hands-on experience in a virtual environment. The Department of Mechanical and Aerospace Engineering created a curriculum which included some hands-on activities used in previous, in-person camps, a homebuilt wind tunnel used to demonstrate aerospace fundamentals, and a popular engineering game used as a teaching tool to explain astronautics concepts. Each week-long camp was conducted via Zoom and led by a team consisting of a NCSU graduate student, three undergraduate students, and a faculty advisor. Anonymous student feedback following the completion of the camps showed overwhelmingly positive results with a majority of students showing interest in pursuing an engineering degree with multiple students expressing interest in attending NCSU 
    more » « less
  7. The interaction between upstream flow disturbance generators and downstream aeroelastic structures has been the focus of several recent studies at North Carolina State University. Building on this work, which observed the modulation of limit cycle oscillations (LCOs) in the presence of vortex wakes, this study examines the design and validation of a novel disturbance generator consisting of an oscillating cylinder with an attached splitter plate. Analytical design of the bluff body was performed based on specific flow conditions which produced LCO annihilation in previous studies. Computational fluid dynamics simulations and experimental wind tunnel tests were used to validate the ability of the new disturbance generator to produce the desired wake region. Future work will see the implementation of this novel design in conjunction with aeroelastic structures in an effort to modulate and control LCOs, including the excitation and annihilation thereof. 
    more » « less
  8. Periodic upstream flow disturbances from a bluff body have recently been shown to be able to modulate and annihilate limit cycle oscillations (LCOs) in a downstream aeroelastic wing section under certain conditions. To further investigate these phenomena, we have implemented a controllable wind tunnel disturbance generator to enable quantification of the parameter ranges under which these nonlinear interactions can occur. This disturbance generator, consisting of a pitch-actuated cylinder with an attached splitter plate, can be oscillated to produce a von Karman type wake with vortex shedding frequency equal to the oscillation frequency over a range of frequencies around the natural shedding frequency of the cylinder alone. At vortex shedding frequencies away from the LCO frequency of the wing, forced oscillations were observed in the wing, but the wing did not enter self-sustaining LCOs. However, when disturbances were introduced near the LCO frequency, the initially static downstream wing entered self-sustaining oscillations in the presence of the incoming vortices, and these LCOs persisted when the disturbance generator was stopped. Annihilation of the wing LCOs was also observed disturbance vortices were introduced upstream of the wing in LCO. 
    more » « less