Abstract The addition of surface acoustic wave (SAW) technologies to microfluidics has greatly advanced lab-on-a-chip applications due to their unique and powerful attributes, including high-precision manipulation, versatility, integrability, biocompatibility, contactless nature, and rapid actuation. However, the development of SAW microfluidic devices is limited by complex and time-consuming micro/nanofabrication techniques and access to cleanroom facilities for multistep photolithography and vacuum-based processing. To simplify the fabrication of SAW microfluidic devices with customizable dimensions and functions, we utilized the additive manufacturing technique of aerosol jet printing. We successfully fabricated customized SAW microfluidic devices of varying materials, including silver nanowires, graphene, and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). To characterize and compare the acoustic actuation performance of these aerosol jet printed SAW microfluidic devices with their cleanroom-fabricated counterparts, the wave displacements and resonant frequencies of the different fabricated devices were directly measured through scanning laser Doppler vibrometry. Finally, to exhibit the capability of the aerosol jet printed devices for lab-on-a-chip applications, we successfully conducted acoustic streaming and particle concentration experiments. Overall, we demonstrated a novel solution-based, direct-write, single-step, cleanroom-free additive manufacturing technique to rapidly develop SAW microfluidic devices that shows viability for applications in the fields of biology, chemistry, engineering, and medicine.
more »
« less
Flow Chemistry: A Sustainable Voyage Through the Chemical Universe en Route to Smart Manufacturing
Microfluidic devices and systems have entered many areas of chemical engineering, and the rate of their adoption is only increasing. As we approach and adapt to the critical global challenges we face in the near future, it is important to consider the capabilities of flow chemistry and its applications in next-generation technologies for sustainability, energy production, and tailor-made specialty chemicals. We present the introduction of microfluidics into the fundamental unit operations of chemical engineering. We discuss the traits and advantages of microfluidic approaches to different reactive systems, both well-established and emerging, with a focus on the integration of modular microfluidic devices into high-efficiency experimental platforms for accelerated process optimization and intensified continuous manufacturing. Finally, we discuss the current state and new horizons in self-driven experimentation in flow chemistry for both intelligent exploration through the chemical universe and distributed manufacturing. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
more »
« less
- PAR ID:
- 10333391
- Date Published:
- Journal Name:
- Annual Review of Chemical and Biomolecular Engineering
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 1947-5438
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lithium-ion batteries, which power portable electronics, electric vehicles, and stationary storage, have been recognized with the 2019 Nobel Prize in chemistry. The development of nanomaterials and their related processing into electrodes and devices can improve the performance and/or development of the existing energy storage systems. We provide a perspective on recent progress in the application of nanomaterials in energy storage devices, such as supercapacitors and batteries. The versatility of nanomaterials can lead to power sources for portable, flexible, foldable, and distributable electronics; electric transportation; and grid-scale storage, as well as integration in living environments and biomedical systems. To overcome limitations of nanomaterials related to high reactivity and chemical instability caused by their high surface area, nanoparticles with different functionalities should be combined in smart architectures on nano- and microscales. The integration of nanomaterials into functional architectures and devices requires the development of advanced manufacturing approaches. We discuss successful strategies and outline a roadmap for the exploitation of nanomaterials for enabling future energy storage applications, such as powering distributed sensor networks and flexible and wearable electronics.more » « less
-
The ability to construct multiplexed micro-systems for fluid regulation could substantially impact multiple fields, including chemistry, biology, biomedicine, tissue engineering, and soft robotics, among others. 3D printing is gaining traction as a compelling approach to fabricating microfluidic devices by providing unique capabilities, such as 1) rapid design iteration and prototyping, 2) the potential for automated manufacturing and alignment, 3) the incorporation of numerous classes of materials within a single platform, and 4) the integration of 3D microstructures with prefabricated devices, sensing arrays, and nonplanar substrates. However, to widely deploy 3D printed microfluidics at research and commercial scales, critical issues related to printing factors, device integration strategies, and incorporation of multiple functionalities require further development and optimization. In this review, we summarize important figures of merit of 3D printed microfluidics and inspect recent progress in the field, including ink properties, structural resolutions, and hierarchical levels of integration with functional platforms. Particularly, we highlight advances in microfluidic devices printed with thermosetting elastomers, printing methodologies with enhanced degrees of automation and resolution, and the direct printing of microfluidics on various 3D surfaces. The substantial progress in the performance and multifunctionality of 3D printed microfluidics suggests a rapidly approaching era in which these versatile devices could be untethered from microfabrication facilities and created on demand by users in arbitrary settings with minimal prior training.more » « less
-
We propose a coarse-grained theoretical model to capture the ageing of microfluidic devices under different conditions including constant applied flow rate and constant applied pressure gradient. Microfluidic devices that sort cells by their deformability hold significant promise for medical applications. However, clogging in these microfluidic systems causes their properties to change over time and potentially limits their reliability. We compare the results of the coarse-grained model with those of stochastic simulations and with existing theoretical studies. Lastly, we apply the model to experimental data on the clogging of sickle red blood cells and discuss its wider applicability.more » « less
-
Optimization of mixing in microfluidic devices is a popular application of computational fluid dynamics software packages, such as COMSOL Multiphysics, with an increasing number of studies being published on the topic. On one hand, the laminar nature of the flow and lack of turbulence in this type of devices can enable very accurate numerical modeling of the fluid motion and reactant/particle distribution, even in complex channel geometries. On the other hand, the same laminar nature of the flow, makes mixing, which is fundamental to the functionality of any microfluidic reactor or assay system, hard to achieve, as it forces reliance on the slow molecular diffusion, rather than on turbulence. This in turn forces designers of microfluidic systems to develop a broad set of strategies to enable mixing on the microscale, targeted to the specific applications of interest. In this context, numerical modeling can enable efficient exploration of a large set of parameters affecting mixing, such as geometrical characteristics and flow rates, to identify optimal designs. However, it has to be noted that even very performant mixing topologies, such as the use of groove-ridge surface features, require multiple mixing units. This in turn requires very high resolution meshing, in particular when looking for solutions for the convection-diffusion equation governing the reactant or chemical species distribution. For the typical length of microfluidic mixing channels, analyzed using finite element analysis, this becomes computationally challenging due to the large number of elements that need to be handled. In this work we describe a methodology using the COMSOL Computational Fluid Dynamics and Chemical Reaction Engineering modules, in which large geometries are split in subunits. The Navier-Stokes and convection-diffusion equations, are then solved in each subunit separately, with the solutions obtained being transferred between them to map the flow field and concentration through the entire geometry of the channel. As validation, the model is tested against data from mixers using periodic systems of groove-ridge features in order to engineer transversal mixing flows, showing a high degree of correlation with the experimental results. It is also shown that the methodology can be extended to long mixing channels that lack periodicity and in which each geometrical mixing subunit is distinct.more » « less
An official website of the United States government

